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ABSTRACT 
In a recent review of the status of the Northwest Atlantic harp seal population, model fit to aerial 
survey estimates of pup production and annual reproductive rates was poor compared to 
previous assessments indicating underlying problems relating to model assumptions and/or 
structure. In this study, a new hierarchical Bayesian state-space model was fitted to the same 
data on pup production, annual fecundity, human removals, and environmental conditions used 
in the previous assessment to produce annual estimates of pup production and total abundance 
from 1952‒2019. Data on age structure based upon random samples were also included, and 
the process model incorporated environmental stochasticity and several other improvements. 
The new model estimates were similar to the previous model through 1990 but then diverged, 
indicating that the population peaked in 1997 at 6.6 million animals, almost a decade earlier 
than modelled in previous assessments. After a period of decline due to high catches and poor 
ice conditions, the new model provides an abundance estimate of 4.7 (95% Credibility Interval 
(CI) 3.7-5.7 ) million in 2019, compared to an estimate of 7.6 (95% CI 6.6-8.8) million in the last 
assessment. The lower estimates of recent abundance reflect higher and more variable juvenile 
mortality after 2000 due to a combination of density-dependent and density independent factors 
operating on juvenile survival. The new model also suggests a decline in equilibrium abundance 
(K) levels from 7.6 (95% CI=7.4 to 7.8) million Northwest Atlantic harp seals prior to 2000 to 6.8 
(95% CI=6.7 to 6.9) million animals post-2000.   
Key words: harp seal, Pagophilous groenlandicus, abundance, climate change, Bayesian 
model, population dynamics, pup production. 
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INTRODUCTION 
The harp seal (Pagophilus groenlandicus) is a medium sized, migratory phocid distributed over 
continental shelf regions of the north Atlantic. They are the most abundant pinniped in the North 
Atlantic (Hammill and Stenson 2022). The Northwest Atlantic (NWA) population, is one of three 
populations found in this area and is much larger than the other two populations (Greenland 
Sea and White Sea populations), which number less than 2 million combined (Stenson et al. 
2020b).  
The NWA population summers in the eastern Canadian Arctic and adjacent waters, but 
migrates south along the Canadian continental coast in the fall to overwinter and reproduce off 
northeastern Newfoundland and in the Gulf of St. Lawrence (Figure 1)(Sergeant 1991; Stenson 
and Hammill 2014). Harp seals require pack ice as a platform, to give birth and nurse their pup. 
After weaning the young harp seal, now moulted and referred to as a beater, uses the ice as a 
resting platform for several weeks. Harp seals are harvested commercially mainly during their 
first year (referred to as Young of the Year or YOY). They are also taken as bycatch in 
commercial fisheries (Stenson and Upward 2020).  

 
Figure 1. Map of study area showing locations of harp seal whelping patches in the Northwest Atlantic 
(Stenson and Hammill 2014). 

Reproduction and abundance of NWA harp seals have been studied extensively since the 
1950s (e.g. Fisher 1954; Sergeant and Fisher 1960; Sergeant 1975; Bowen et al. 1981; Bowen 
and Sergeant 1983; Myers and Bowen 1989; Sergeant 1991; Sjare et al. 2000; Stenson and 
Hammill 2014; Stenson et al. 2014, 2016, 2020a). For the past 50 years, the population 
dynamics, and total allowable catch (TAC), have been estimated using variations of an age-
structured deterministic demographic model (Shelton et al. 1992; Healey and Stenson 2000; 
Stenson et al. 2003, Hammill and Stenson 2010, Stenson and Hammill 2014). This three-
parameter population model (referred to as the ‘Deterministic Model’) was fitted to independent 
field estimates of pup production and age specific reproductive rates taking into account annual 
removals from the population. More recently it has also included environmental conditions that 
are believed to influence the dynamics of the NWA harp seal population (Hammill et al. 2014, 
2015, 2021). The basic structure consisted of a discrete-time process model describing annual 
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reproductive output and survival of 27 age classes: young-of-the year (YOY) , single year age 
classes from age 1 year up to age 25 years, with all older animals combined into a 26+ class. 
Animals aged 8 years and older were pooled and assigned a reproductive rate corresponding to 
the pooled estimate.  
Several sources of mortality were included in the process model, including baseline mortality 
(age class 0 and seals one year of age and older [1+]), density-dependent effects, YOY 
mortality in whelping patches due to reduced ice cover conditions, and various sources of 
human removals including reported harvest, bycatch, and the number of seals killed but not 
landed during the hunt (i.e. struck and lost) in both Canada and Greenland. The unknown 
parameters that determine process model dynamics were estimated by fitting to observed data 
sets on pup counts and female pregnancy rates; no survey data are available on abundance of 
the adult population.  
The Deterministic model was relatively successful at predicting pup estimates through the early 
2000s; however, from the mid-2000’s through 2019, the model was less successful at capturing 
observed variation in estimates of pup production and showed marked changes in the pattern 
and trend in abundance compared to earlier evaluations (Figure 2A). Fitting the model to the 
1952-2014 data showed a population recovering slowly from 1972 to approximately 1982, then 
increasing rapidly, peaking at 7.8 million animals in 2008 before declining slightly to 7.4 million 
animals in 2014 (Hammill et al. 2015). Fitting the model to the new survey estimate of pup 
production from 2017, and updated reproductive rate and removal data to 2019 provided a very 
different view of the population trend with recovery beginning from a higher level in 1972 and 
continuing until 1982, then increasing rapidly to peak at approximately 5.5 million in 1997, 
leveling off at that level until 2010 when a slight dip was observed, and then a period of renewed 
growth to 7.6 million animals by 2019 (Hammill et al. 2021; Figure 2B). 
Several reasons for model projection discrepancies have been suggested, including greater 
variability in ice cover and environmental conditions in recent years that may be affecting both 
pregnancy rates and juvenile survival, as well as limitations in model structure. Some of the 
structural limitations of the Deterministic model include: 1) lack of formal consideration or 
inclusion of environmental stochasticity within the process model, particularly in the case of 
juvenile survival rates and pregnancy rates. Variation in pregnancy rates are allowed for but are 
not estimated as part of model fitting, rather they are computed separately using a non-
parametric smoothing algorithm that prevents disentanglement of observer error and process 
error; 2) an assumed, fixed (literature-based) ratio of juvenile survival to adult survival rates, and 
lack of age variation in adult survival (Hammill et al. 2015). In Hammill et al. (2021), this 
assumption was relaxed slightly by fixing adult survival rate and then allowing the model to 
estimate a constant juvenile survival rate over the time series; 3) fixed and ad-hoc values for 
several other model parameters, including density-dependent function shape for juvenile 
survival and reproductive rates and mortality from ice cover anomalies; 4) model fitting methods 
that do not allow for separation of variance due to process error and observer error.  
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Figure 2. (A) Estimates of pup production from aerial surveys or mark-recapture studies (squares with 
95% CI): estimates of pup production from model fit to 1952-2012 survey/mark-recapture estimates, 
1952-2014 reproductive rate and removal data (blue line) (Hammill et al. 2015); estimated pup production 
after model fitted to 1952-2017 survey data, 1952-2019 reproductive rate data and removal data (black 
line with yellow dots)(Hammill et al. 2021). (B) Estimates of total abundance of northwest Atlantic harp 
seals fitting the model to aerial survey and reproductive rate data from 1952-2012 survey and projected 
forward using the 2014 reproductive rate data (blue line) (Hammill et al. 2015); and model fitted to 1952-
2017 survey data and reproductive data to 2019 (black line with yellow dots) (Hammill et al. 2021). Dotted 
lines are 95% Confidence Intervals (95% CI). 
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This study presents a Stochastic model for the analysis of harp seal demography and 
population dynamics, fit to the same data sets as presented at the 2019 assessment (Hammill 
et al. 2021) plus an additional data set on annual age structure of randomly sampled animals. 
The Stochastic model structure resembles the Deterministic model, in that the process model 
tracks annual fecundity, survival, and abundance of multiple age classes. However, instead of 
treating certain parameters as fixed constants, the model attempts to estimate parameter values 
allowing for data-driven estimates of age specific survival, density-dependent effects, mortality 
from ice anomalies, and effects of environmental conditions on fecundity and survival. Model 
fitting is conducted using a hierarchical Bayesian state-space approach that allows for more 
robust characterization of uncertainty, disentanglement of process error from observer error, 
and incorporation of multiple data sources with different distributions and variance structures 
(Buckland et al. 2004, Wang 2009, Williams et al. 2017).  

METHODS 
This section first presents the inputs to the population model, followed by an explanation of the 
model structure and fitting. Model performance is evaluated over the period 1952-2019, the 
same period that was evaluated at the last assessment and, where possible, using the same 
data.  

DATA INPUT  

Pup production estimates 
The model is fit to 13 independent estimates of pup production, derived using a combination of 
mark-recapture (m-r) and aerial-survey methods (Table 1) as described in Hammill et al. (2021). 
The standard errors associated with the four m-r estimates have been doubled following Roff 
and Bowen (1986).



 

5 

Table 1. Pup production estimates (SE) from aerial surveys (1951, 1960, 1990-2012), and mark-recapture studies (1978-1983) used as input into 
the population model (Hammill et al. 2021).  

Year Southern Gulf Northern Gulf Front Total Method Reference 

1951 - - - 645,000 (322,500) * Aerial survey Sergeant and Fisher 1960 

1960 - - - 235,000 (117,500) * Aerial survey Sergeant and Fisher 1960 

1978 - - - 497,000 (68,000) ** Mark-Recapture Roff and Bowen 1986 

1979 - - - 478,000 (70,000) ** Mark-Recapture Roff and Bowen 1986 

1980 - - - 475,000 (94,000) ** Mark-Recapture Roff and Bowen 1986 

1983 - - - 534,000 (66,000) ** Mark-Recapture Roff and Bowen 1986 

1990 106,000 (23,000) 4400 (1,300) 467,000 (31,000) 577,900 (38,800) Aerial survey Stenson et al. 1993 

1994 198,600 (24,200) 57,600 (13,700) 446,700 (57,200) 702,900 (63,600) Aerial survey Stenson et al. 2002 

1999 176,200 (25,400) 82,600 (22,500) 739,100 (96,300) 997,900 (102,100) Aerial survey Stenson et al. 2003 

2004 261,000 (25,700) 89,600 (22,500) 640,800 (46,900) 991,400 (58,200) Aerial survey Stenson et al. 2014 

2008 287,000 (27,600) 172,600 (22,300) 1,185,000 (112,000) 1,644,500 (117,900) Aerial survey Stenson et al. 2014  

2012 121,500 (15,300) 74,100 (12 400) 626,200 (66,700) 815,900 (69,500) Aerial survey Stenson et al. 2020b 

2017 18,300 (1,500) 13,600 (3000) 714,600 (89,700) 746,500 (89,800) Aerial survey Stenson et al. 2020b 

* Assumed a coefficient of variation of 50% as discussed in Hammill et al. (2021).  
** Standard errors have been doubled after Roff and Bowen 1986. 
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Reproductive rates  
Female reproduction rates at age were determined using reproductive tracts and jaws from harp 
seals sampled around Newfoundland and southern Labrador since 1979 (Stenson et al. 
2020b)(Appendix 1, Table A1.1). Sampling has focused upon a core area along the northeast 
coast of Newfoundland which is adjacent to key winter and spring feeding habitat. Samples 
were collected by Department of Fisheries and Oceans (DFO) personnel and experienced seal 
hunters under licenses issued by DFO. To minimize potential sampling biases among years, a 
core group of hunters from different areas of the province obtained a sample of seals over the 
entire period.  
Ages were determined to the nearest year by sectioning a lower canine tooth and counting 
dentine annuli (Fisher 1954; Bowen and Sergeant 1983, Frie et al. 2011). Females were 
considered immature if the ovaries were small and contained only inactive follicles with no 
corpus luteum (CL) or corpus albicans (CA) (Fisher 1954; Bowen et al. 1981; Stenson et al. 
2016). If there was evidence of a CL and/or CA in either ovary, the seal was considered mature. 
Mature females were considered pregnant if the ovary contained a large, fully luteinized CL in 
one of the ovaries and, since 1985, the presence of a foetus. Mature females lacking an active 
CL, but showing evidence of having ovulated previously (i.e., a CA was present) were 
considered non-pregnant. As in previous studies, all seals less than three years of age were 
considered immature (Sjare and Stenson 2010; Stenson et al. 2020a). 
For ovaries collected after 1984, the size of all CA and CL were measured in two directions and 
the mean recorded. For ovaries prior to 1985, the maximum diameter was recorded. Seals that 
lacked a developing foetus but had a CL ≥13 mm or CA ≥12 mm, a rugose uterus and a large 
difference in uterine horn width (~15.0 mm), were assumed to have pupped recently (i.e., less 
than a month, Stenson et al. 2016). For seals collected prior to February 20th, it was assumed 
that those pups did not survive and that this represented a premature birth (i.e., late-term 
abortion). For seals collected after February 20th, it was assumed that these pups contributed to 
the population that year. It is also assumed that if a female has an active CL and foetus on the 
day of collection, she would have completed the pregnancy successfully.  
Fecundity rates, defined as the proportion of mature females that are pregnant, and ag- specific 
pregnancy rates were calculated as per Stenson et al. (2016). Late-term pregnancy, fecundity, 
and abortion rates were estimated from seals collected between October and February although 
the vast majority of seals were collected after November.  

Age Structure 
Age data were obtained from seals collected for reproductive rates (described above) or during 
other sampling programs carried out by DFO. Seals of all ages have been collected although 
there was a suggestion that younger ages may be under, or over, represented in some annual 
samples. Changes in demographic rates from density dependent and environmental factors are 
likely to act first on younger age classes (Eberhardt 2002), and thus excluding younger ages 
limits the ability of the model to capture key demographic trends, especially over the last 5-10 
years of the time series. We therefore examined the impact on model results of including 
younger age classes in model fitting, and then used information theoretical methods to select 
the optimal minimum age for inclusion (see section on “Model Fitting”, and Appendix 2, for 
details of minimum age evaluation). Based on this analysis it was determined that using age 
data for seals 5 years old and above provided the most reliable results. 
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Catches 
The sources of mortality directly due to humans are the commercial and personal use seal hunt 
in two areas of Atlantic Canada (referred to as ‘Front’ and ‘Gulf’), the subsistence/commercial 
harvests in Greenland and the Canadian Arctic, and incidental catches in commercial fishing 
gear (i.e., bycatch). Data on the levels of various components of this mortality are available 
since 1952 (Stenson and Upward 2020). Because there is normally a two year delay in the 
collection of the Greenland harvest data, for 2018 and 2019, the average catch for the last five 
years is used. The reported and estimated catches used in Hammill et al. (2021) are from 
Stenson and Upward (2020) and are listed in Appendix 3 (Table A3.1). In the past, it has been 
assumed that catches have been known without error. However, 100% reporting from all of the 
different sources of human related mortality is unlikely. The impact of different coefficients of 
variation (CV) in reported mortality (CV=0, 5, 10 and 20%) on model parameter estimates and 
trend were examined, but there was no evident impact (Appendix 4). Recognizing that there is 
some uncertainty in total removals, a CV of 10% is assumed.  
Corrections for struck and loss are incorporated into the model as the proportion of animals 
killed that are recovered (Sjare and Stenson 2002). For the whitecoat hunt prior to 1983, the 
struck and loss correction is only 1%. Since 1983, it is assumed that 95% of the YOY and 50% 
of the 1+ animals in the Canadian commercial hunt (Front and Gulf) are recovered and 
reported, while 50% of all animals killed in Greenland and the Canadian Arctic are assumed to 
have been recovered and reported (Sjare and Stenson 2002)(Figure 3).  

 
Figure 3. Estimated total human-induced mortality of Northwest Atlantic harp seals (Stenson and Upward 
2020). Reported catches from harvesting are adjusted for struck and loss after Sjare and Stenson (2002). 

Ice-related mortality of YOY 
Poor ice conditions result in increased mortality of YOY during their first month of life (Mice)., 
This mortality is episodic and thus is not captured by the model estimate of average mortality 
(Stenson and Hammill 2014). Harp seals do not use all of the available ice in the pupping areas 
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and so minor positive or negative anomalies are unlikely to have an impact on pup survival. 
However, in some years large numbers of dead pups wash up on the beach, or are observed 
floating in the water, suggesting higher than usual mortality has occurred. In the previous model 
we used these observed patterns of mortality to identify a threshold for the values of “ice 
anomalies” (deviations from average ice cover) likely to result in increased juvenile mortality in 
the Gulf and at the Front (Hammill et al. 2021). There has been an overall decline in ice cover in 
both regions since the late 1990s. A standard ice cover anomaly was developed using the 
average ice cover between 1969-2000 (Figure 4; see below). The annual ice anomaly (IC) was 
calculated using the formula: ICt= (ice cover t – ice cover mean 1969-2000 )/ ice cover mean 1969-2000 
where ice cover is in km2 in year t. Total first year ice (the type primarily used for pupping) 
extent was extracted from the Gulf of St. Lawrence and southern Labrador ice charts for the 
weeks of 28 February and 5 March respectively (Canadian Ice Service of Environment Canada).  

 
Figure 4. Ice anomalies using mean first-year ice cover during 1969-2000 as the baseline year. The 
annual ice anomaly (IC) was calculated using the formula: ICt= (ice cover t – ice cover mean 1969-2000 )/ ice 
cover mean 1969-2000 where ice cover is in km2 in year t. Data from the Canadian Ice Service of Environment 
and Climate Change Canada for the areas Gulf of St Lawrence and southern Labrador. 

In Hammill et al. (2021), no additional mortality was assumed to occur if the ice-cover anomaly 
was at or above the threshold (where threshold ice cover =-0.3 in Gulf, and -0.5 at Front), but if 
the anomaly was below the threshold, higher than normal mortality was assumed to be 
proportional to the magnitude of the negative anomaly. Thus a 60% decline in ice cover was 
assumed to result in 60% mortality (or 40% survival). Mice was calculated for the Front and the 
Gulf separately and then the two indices were combined, weighted assuming that 30% of pups 
are born in the Gulf and 70% at the Front. These were converted to a survival index (Sice=1- 
Mice;). In the Stochastic model, the same ice anomaly index values were used, but no 
assumptions were made about the magnitude of associated mortality; rather, the functional 
relationship between ice anomalies and juvenile survival was estimated as part of model fitting.  

https://iceweb1.cis.ec.gc.ca/IceGraph/page1.xhtml?lang=en
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Comprehensive Environmental Index (Newfoundland Climate Index) 
To account for some ecosystem variability a Comprehensive Environmental Index has been 
incorporated into the model as a multiplier on ecosystem carrying capacity (K) (Hammill et al. 
2021). The Comprehensive Environmental Index (CEI) provides a measure of the overall state 
of environmental conditions. The index is a mosaic of a time series including meteorological, 
sea temperature, salinity, ice and cold intermediate layer measurements from a variety of sites 
in the Northwest Atlantic. It is calculated annually as the sum of the standardized anomalies of 
28 environmental indices (Colbourne et al. 2016). Negative values generally reflect cooler 
conditions while positive values reflect warmer (Figure 5). Because of difference data availability 
among some of the measures and potential duplication, the Comprehensive Environmental 
Index has been revised, updated and renamed the Newfoundland Climate Index (Figure 5, Cyr 
and Galbraith 2021). The Newfoundland climate Index (NCI) uses a reduced number of 
components (10) and is calculated as the average of the different components rather than their 
sum.  
Hammill et al. (2021) used the CEI in their analysis while in this analysis, the NCI is used. The 
two indices are very similar (correlation 0.86). Lower values are associated with cooler 
conditions, considered more favourable to harp seals, whereas higher values are associated 
with warmer conditions. 

 
Figure 5. Variability in the Comprehensive Environmental Index (CEI) between 1950 and 2018 used in 
Hammill et al. (2021). The CEI has been replaced by the Newfoundland Climate Index (NCI) developed 
by Cyr and Galbraith (2021). There is strong correlation between the two indices. 



 

10 

MODEL DESCRIPTION 
The methods for analyzing the harp seal population can be described in three parts: 1) the 
process model, a series of equations that describe demographic transitions and which, when 
solved, predict dynamics in the variables of interest (e.g. population abundance) based on the 
values of the input parameters; 2) the data model, which describes how empirical data sets are 
related to the predicted dynamics of the process model; 3) model fitting, which describes how 
input parameters are estimated. All parameters estimated by model fitting are summarized in 
Table 2. 

PROCESS MODEL 
Population dynamics are described using discrete annual time steps and formulated assuming a 
pre-breeding estimate (i.e. the population state at time t corresponds to the state at the 
beginning of a pupping season), as this formulation simplified interpretation of age samples and 
pregnancy rate data (pup counts could then be compared with expected births given number of 
pregnant animals. Model terms are presented in Table 2. The population is age-structured, such 
that a population vector n(i,t) describes the number of individuals in age class i (i = 1, 2… 36) at 
year t, and N(t) is the sum of n(i,t) across age classes. We note that the last age class, i = 36, 
represents a multi-year class comprised of all animals older than 35 yrs; also, we assume a 
50:50 sex ratio for all age classes (i.e., we assume survival rates are similar for males and 
females, as harp seals do not show pronounced sexual dimorphism). Under the assumption of a 
pre-breeding abundance estimate the first entry in the population vector (n(1,t)) represents 
juveniles (age class 0) about to recruit to the adult (seals one year of age and older or 1+) 
population (i.e., pups born the previous year that have survived to just before their first birthday), 
although we note that the model also tracks YOY as the summed reproductive output of adults. 
Demographic transitions from year t to year t+1 are calculated from annually varying vital rates, 
including fecundity (F), juvenile survival (𝑆𝑆0, the probability a pup survives from weaning to its 
first birthday), and adult (1+) survival (𝑆𝑆𝐴𝐴(𝑖𝑖), the probability an individual of age i, where i is ≥1, 
survives to the next year). Vital rates are assumed to be density-dependent, meaning that they 
can vary as functions of relative population abundance (N, which for computational tractability 
we re-scale to units of millions of animals, N*) and are also affected by annually varying 
environmental conditions, ice cover and harvest/bycatch mortality (Hammill and Sauvé 2017).  

Fecundity 
The factors that determine the probability that a female gives birth (or at least reaches late-
stage pregnancy) at year t are her age (i), current population abundance (N*(t)), environmental 
and climatic conditions (NCI), and unexplained variance or environmental stochasticity 
(𝜀𝜀𝐹𝐹(Stenson and Hammill 2014). Fecundity is fixed at 0 for females aged 1-3 years, and is 
calculated using a logit function for females > 4 years: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐹𝐹(𝑖𝑖, 𝑡𝑡)� = 𝛽𝛽1 + 𝛽𝛽2 ∙ (8 − 𝑖𝑖)2 − �∅𝐹𝐹 ∙ 𝑁𝑁∗(𝑡𝑡)�𝜃𝜃𝐹𝐹 − 𝛿𝛿𝐹𝐹 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑡𝑡 − 1) + 𝜀𝜀𝐹𝐹(𝑡𝑡) (1) 

where stochasticity in pregnancy rates (𝜀𝜀𝐹𝐹) is modeled as a hierarchical effect and estimated as: 

𝜀𝜀𝐹𝐹(𝑡𝑡)~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0,𝜎𝜎𝐹𝐹) (1) 

and where 𝛽𝛽, 𝜙𝜙𝐹𝐹, 𝜃𝜃𝐹𝐹, 𝛿𝛿𝐹𝐹, and 𝜎𝜎𝐹𝐹 are all parameters to be estimated from the observed late term 
pregnancy rates. The direction and magnitude of effects on fecundity associated with the NCI 
are determined by parameter 𝛿𝛿𝐹𝐹, and we assume a 1-year lag (i.e., female fecundity in year t is 
primarily affected by the NCI value in year t-1). Equation (1) also includes density-dependent 
effects (determined by current population abundance and parameters 𝜙𝜙𝐹𝐹 and 𝜃𝜃𝐹𝐹), and age 
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effects are structured such that fecundity becomes asymptotic by age 8 (annual fecundity for 
females aged >8 years is set equal to F(8,t)) following previous analyses (Stenson et al. 2003). 

Survival from competing hazards: overview 
We use a proportional hazards formulation to model survival, which provides a mathematically 
coherent way to incorporate and estimate multiple competing hazards. Expressed in a slightly 
different way, a cause-specific hazard represents the instantaneous risk of dying from a 
specified cause. The cumulative hazards function is a mathematical expression that defines the 
total probability of dying at time t from all sources of mortality (e.g., Gelfand et al. 2000, Heisey 
and Patterson 2006, Beyersmann et al. 2009, Brodie et al. 2013). Specifically, the cause-
specific hazards we wish to estimate include harvest/bycatch mortality, hazards associated with 
anomalously low ice cover (for juveniles), and baseline hazards including density dependence 
and additional unexplained environmental stochasticity. In the following paragraphs we describe 
how each of these hazards are estimated and then combined to derive annual survival rates for 
juveniles and adults. Note that when fitting hazards models, it is typical to work with log-
transformed hazard rates (represented by the symbol 𝛾𝛾), as this allows various fixed and 
random effects to be expressed as simple additive equations. 

Age-specific baseline hazards 
Baseline hazards are assumed to represent all sources of “natural mortality” (excluding the 
mortality of pups from anomalously low ice cover, which is calculated as a separate hazard as 
described below) and incorporate density-dependence and environmental stochasticity. We 
assume that baseline hazards can vary with age in a non-linear manner (i.e. the typical “U-
shaped” pattern of age-specific mortality for many mammals; Caughley 1966; Chu et al. 2007), 
and thus express the age-varying component of baseline log-hazards as: 

𝛾𝛾𝐴𝐴(𝑖𝑖) = 𝛼𝛼0 − 𝛼𝛼1 ∙ max(0,10 − 𝑖𝑖) + 𝛼𝛼2 ∙ max (0, 𝑖𝑖 − 10)2 (2) 

Note that we re-center the age vector in equation 3 by subtracting 10 to simplify fitting and 
parameter interpretation: specifically, 𝛼𝛼0 represents baseline log hazards for a 10 yr-old adult, 
𝛼𝛼1 represents additional log hazards for younger animals and 𝛼𝛼2 represents additional log 
hazards for older animals. For juveniles (𝛾𝛾0) we solve the same equation with i = 0. 

We also allow for effects of density-dependence and, for juveniles, environmental variation as 
captured by the NCI, as well as additional unexplained stochasticity. Density-dependent log-
hazards were calculated as a function of current population abundance (similar in form to 
density-dependent effects on fecundity): 

𝛾𝛾𝐷𝐷 = (∅𝑆𝑆 ∙ 𝑁𝑁∗(𝑡𝑡))𝜃𝜃𝑆𝑆 (3) 
The direction and magnitude of effects associated with climate-driven variation are calculated 
analogously to the formulation for fecundity (but with no lag, thus assuming that current-year 
conditions affect juvenile survival), as 𝛿𝛿𝑆𝑆  ∙ 𝑁𝑁𝑁𝑁𝑁𝑁. Environmental stochasticity in survival (𝜀𝜀𝑆𝑆(𝑡𝑡)) is 
modeled as a random hierarchical effect: 

𝜀𝜀𝑆𝑆(𝑡𝑡)~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0,𝜎𝜎𝑆𝑆) (4) 

We sum the log-hazard effects described in equations 3–5 and transform by exponentiation to 
derive the baseline hazard terms for juveniles and adults: 

ℎ0(𝑡𝑡) = exp (𝜔𝜔 + 𝛾𝛾0 + 𝛾𝛾𝐷𝐷 + 𝛿𝛿𝑆𝑆 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑡𝑡) + 𝜀𝜀𝑆𝑆(𝑡𝑡)) (5) 

ℎ𝐴𝐴(𝑖𝑖, 𝑡𝑡) = exp (𝜔𝜔 + 𝛾𝛾𝐴𝐴(𝑖𝑖) + � 1
𝑖𝑖+0.5

�
𝜁𝜁
∙ 𝛾𝛾𝐷𝐷) (6) 
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Where parameters 𝛼𝛼0, 𝛼𝛼1, 𝛼𝛼2, 𝜙𝜙𝑆𝑆, 𝜃𝜃𝑆𝑆 𝛿𝛿𝑆𝑆, ζ and 𝜎𝜎𝑆𝑆 are all estimated as part of model fitting, and 𝜔𝜔 
is a nuisance constant (arbitrarily fixed at -7) that improves fitting and simplifies interpretation by 
allowing all other log-hazard parameters to represent log hazard ratios relative to a minimum 
possible mortality rate. We note that variation due to NCI and stochastic effects for adults is 
assumed to be minor and thus safely omitted from equation (7), while density-dependent effects 
are assumed to be small relative to juveniles and to vary with age, with parameter ζ controlling 
the rate at which density-dependent effects on survival decline with age. 

Ice anomaly hazards (juveniles) 
One potential source of mortality for pups in the juvenile age class (age 0) is associated with 
poor ice conditions, which can lead to drowning of juveniles when ice breaks up during storms. 
While impossible to predict such events with certainty, they are more likely to occur during years 
with relatively low ice cover. The model tracks this ice-related mortality as a separate hazard for 
juveniles, modelled as a function of an “Ice Anomaly index” (IC). The IC is calculated for each 
year (t) and breeding area (a) as the proportional deviation in % first-year ice from the average 
% first-year ice cover for breeding area a over the period 1969-2000 during the weeks of Feb 26 
in the Gulf and March 5 at the Front which corresponds to the beginning of pupping in the two 
areas, where: 

𝐼𝐼𝐼𝐼(𝑎𝑎, 𝑡𝑡) = %𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎, 𝑡𝑡) − 𝑎𝑎𝑎𝑎𝑎𝑎. [%𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎)]
𝑎𝑎𝑎𝑎𝑎𝑎. [%𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎)]�  (7) 

The IC index thus varies between 1 and -1, with 0 corresponding to the average of ice cover 
between 1969 and 2000 (Hammill et al. 2014). Values significantly less than 0 indicate 
anomalously low ice cover. The form of the functional relationship between log-hazards from 
poor ice conditions and IC was defined based on the recognition that in years with average or 
above-average ice cover, there is little or no mortality, but in years when the ice cover is 
significantly below average the mortality rate increases sharply. Accordingly, we calculate ice-
related log hazards for each breeding area and year using a scaled logit function: 

𝛾𝛾𝐼𝐼𝐼𝐼(𝑎𝑎, 𝑡𝑡) = (−𝜔𝜔 + 1) ∙ 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝛹𝛹1 − 𝛹𝛹1 ∙ 𝐼𝐼𝐼𝐼(𝑎𝑎, 𝑡𝑡)] (8) 

where 𝜓𝜓1 and 𝜓𝜓2 are estimated parameters and 𝜔𝜔 is the nuisance constant defined above. 
Recognizing that ice anomalies in the Gulf and at the Front might have differing effects on 
juvenile survival, we fit separate values of parameter 𝜓𝜓1 for the Gulf (𝜓𝜓1𝐺𝐺) and Front (𝜓𝜓1𝐹𝐹). To 
calculate the population-level hazards from ice anomalies, we transform by exponentiation and 
take the weighted average across breeding areas (a = 1 for S. Gulf, 3 for Front), with weighting 
determined by the proportion of pups born in each breeding area (P(a,t)): 

ℎ𝐼𝐼𝐼𝐼(𝑡𝑡) = ∑ 𝑃𝑃(𝑎𝑎, 𝑡𝑡) ∙ exp (𝜔𝜔 + 𝛾𝛾𝐼𝐼𝐼𝐼(𝑎𝑎, 𝑡𝑡))3
𝑎𝑎=1  (9) 

Harvest/by-catch hazards 
Cumulative deaths from all human activities– including fishing by-catch, legal harvests of adults 
and YOY in eastern Canada, the Canadian Arctic, and Greenland, as well as struck and loss 
mortality from harvests–- are represented in the model as a separate hazards term. The 
magnitude of these sources of mortality varies from year to year, so we calculate the log-
hazards associated with harvest/by-catch for YOY (age 0) and adults (ages>0) as hierarchical 
random effects: 

𝛾𝛾𝐻𝐻0(𝑡𝑡)~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝛾̅𝛾𝐻𝐻0,𝜎𝜎𝐻𝐻) (10) 

𝛾𝛾𝐻𝐻𝐻𝐻(𝑡𝑡)~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝛾̅𝛾𝐻𝐻𝐻𝐻,𝜎𝜎𝐻𝐻) (11) 
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where the parameters to be fit include average log-hazards from harvest/bycatch for YOY (𝛾𝛾‾𝐻𝐻0), 
average log-hazards from harvest/bycatch for adults (𝛾𝛾‾𝐻𝐻𝐻𝐻) and the magnitude of variance in 
harvest hazards from year to year (𝜎𝜎𝐻𝐻). We then convert log-hazards to hazard rates by 
exponentiation: 

ℎ𝐻𝐻0(𝑡𝑡) = exp (𝜔𝜔 + 𝛾𝛾𝐻𝐻0(𝑡𝑡)) (12) 

ℎ𝐻𝐻𝐴𝐴(𝑡𝑡) = exp (𝜔𝜔 + 𝛾𝛾𝐻𝐻𝐻𝐻(𝑡𝑡)) (13) 

Net annual survival 
For both juveniles and adults, annual survival rates represent the joint probability of surviving all 
competing hazards, and are calculated as: 

𝑆𝑆0(𝑡𝑡) = exp (−1 ∙ [ℎ0(𝑡𝑡) + ℎ𝐼𝐼𝐼𝐼(𝑡𝑡) + ℎ𝐻𝐻0(𝑡𝑡)]) (14) 

𝑆𝑆𝐴𝐴(𝑖𝑖, 𝑡𝑡) = exp (−1 ∙ [ℎ𝐴𝐴(𝑖𝑖, 𝑡𝑡) + ℎ𝐻𝐻𝐻𝐻(𝑡𝑡)]) (15) 

We also define an additional constant term for newborn pup survival (𝑆𝑆𝑛𝑛𝑛𝑛(𝑡𝑡)) to account for early 
pup mortality that occurs prior to the pup counts. Early pup survival is thought to be quite high 
(Stenson and Hammill, DFO unpublished data), hence we fix 𝑆𝑆𝑛𝑛𝑛𝑛 at 0.95. 

Estimated Population dynamics 
The estimated vital rates described above (age-specific survival and fecundity) are organized 
into an age-based projection matrix (Caswell 2001) having dimensions 36×36, that describes all 
demographic transitions at year t: 

𝑴𝑴(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 𝑅𝑅(4, 𝑡𝑡) ⋯ 𝑅𝑅(35, 𝑡𝑡) 𝑅𝑅(36, 𝑡𝑡)
𝑆𝑆𝐴𝐴(1, 𝑡𝑡) 0 0 0 ⋯ 0 0

0 𝑆𝑆𝐴𝐴(2, 𝑡𝑡) 0 0 ⋯ 0 0
0 0 𝑆𝑆𝐴𝐴(3, 𝑡𝑡) 0 ⋯ 0 0
0 0 0 𝑆𝑆𝐴𝐴(4, 𝑡𝑡) ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 𝑆𝑆𝐴𝐴(35, 𝑡𝑡) 𝑆𝑆𝐴𝐴(36, 𝑡𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (16) 

In projection matrix M(t), the terms in the first row, R(i, t), represent reproductive contributions to 
the juvenile age class (assuming a 50:50 sex ratio) and are calculated as: 

𝑅𝑅(𝑖𝑖, 𝑡𝑡) = 1
2
∙ 𝐹𝐹(𝑖𝑖, 𝑡𝑡) ∙ 𝑆𝑆𝑛𝑛𝑛𝑛(𝑡𝑡) ∙ 𝑆𝑆0(𝑡𝑡) (17) 

We next define a population vector, n(t), which describes the number of individuals in each age 
class i at year t, such that the sum of n(t) gives N(t), total abundance. We can then calculate the 
expected age vector in the following year, n(t+1), via matrix multiplication: 

𝒏𝒏(𝑡𝑡 + 1) = 𝐌𝐌(𝑡𝑡) × 𝒏𝒏(𝑡𝑡) (18) 

To initiate the population vector at year 0 we multiply the estimated starting abundance (𝑁𝑁0, a 
parameter to be fit) by the stationary age distribution (SAD) associated with the parameterized 
demographic schedule at t = 1. The SAD is calculated iteratively: we arbitrarily specify an initial 
age distribution, fit the model, algebraically calculate the stable age distribution associated with 
the parameterized matrix at year 1 (Caswell 2001), re-fit the model using this new initial age 
distribution, and repeat the process until values stabilize. 

Predicted age distribution, pup counts, and harvest/bycatch mortality 
The predicted age frequency distribution at year t is calculated as:  
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) = [𝑛𝑛(𝑚𝑚,𝑡𝑡) 𝑛𝑛(𝑚𝑚+1,𝑡𝑡) ⋯ 𝑛𝑛(36,𝑡𝑡)]
∑ 𝑛𝑛(𝑖𝑖,𝑡𝑡)36
𝑖𝑖=𝑚𝑚

 (19) 

where m is the minimum age of adults to be considered for comparison with observed age 
distributions, and n(i, t) represents the ith element of population vector n(t). 
The predicted number of pups available to be counted during a survey in year t is calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) = 0.5 ∙ (∑ 𝑛𝑛(𝑖𝑖, 𝑡𝑡) ∙ 𝐹𝐹(𝑖𝑖, 𝑡𝑡)) ∙ 𝑆𝑆𝑛𝑛𝑛𝑛(𝑡𝑡)36
𝑖𝑖=1  (20) 

We note that equation (21) reflects a 50:50 sex ratio and assumes that a small amount of post-
birth mortality will have occurred prior to the pup count, as determined by survival term 𝑆𝑆𝑛𝑛𝑛𝑛(𝑡𝑡). 

To calculate expected harvest mortality, we first calculate the fraction of all first-year deaths 
accounted for by harvest or bycatch of YOY in year t (𝑓𝑓𝐻𝐻0(𝑡𝑡)) based on the ratios of cause-
specific hazards: 

𝑓𝑓𝐻𝐻0(𝑡𝑡) = ℎ𝐻𝐻0(𝑡𝑡)
[ℎ0(𝑡𝑡)=ℎ𝐼𝐼𝐼𝐼(𝑡𝑡)+ℎ𝐻𝐻0(𝑡𝑡)] (21) 

This value is then used to calculate the predicted total harvest/bycatch of YOY in year t, after 
accounting for struck and loss: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝐻𝐻0(𝑡𝑡) = 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) ⋅ (1 − 𝑆𝑆0(𝑡𝑡)) ⋅ 𝑓𝑓𝐻𝐻0(𝑡𝑡) ⋅ 𝑄𝑄0(𝑡𝑡) (22) 

where 𝑄𝑄0(𝑡𝑡) represents the proportion of harvested YOY that are recovered (i.e., not struck and 
lost) in year t.  
Similarly, the fraction of total adult deaths in each age class represented by harvest/bycatch of 
adults in year t is calculated as: 

𝑓𝑓𝐻𝐻𝐻𝐻(𝑖𝑖, 𝑡𝑡) = ℎ𝐻𝐻𝐻𝐻(𝑡𝑡)
[ℎ𝐴𝐴(𝑖𝑖,𝑡𝑡)+ℎ𝐻𝐻𝐻𝐻(𝑡𝑡)] (23) 

We note that this formula implicitly assumes that the harvest-removals for each age class will be 
proportional to the living age structure (i.e. excluding YOY harvests), and thus does not account 
for any age bias in harvests. This value is then used to calculate the predicted total 
harvest/bycatch of adults in year t, after accounting for struck and loss: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝐻𝐻𝐴𝐴(𝑡𝑡) = ∑ 𝑛𝑛(𝑖𝑖, 𝑡𝑡) ∙ (1 − 𝑆𝑆𝐴𝐴(𝑖𝑖, 𝑡𝑡)) ∙ 𝑓𝑓𝐻𝐻𝐻𝐻(𝑖𝑖, 𝑡𝑡) ∙ 𝑄𝑄𝐴𝐴(𝑡𝑡)36
𝑖𝑖=1  (24) 

where 𝑄𝑄𝐴𝐴(𝑡𝑡) is the proportion of harvested adults that are recovered (i.e., not struck and lost) in 
year t.  

DATA MODEL 
The variables generated by the process model are compared to 4 independent data sets: aerial 
pup surveys, pregnancy rates of sampled females, age composition of sampled adults, and the 
combined harvest/bycatch estimates from multiple sources. The pup abundance estimates are 
assumed to follow a gamma distribution: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)~𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �𝑎𝑎 = [𝑃𝑃𝑃𝑃𝑝𝑝𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)]2

�𝑆𝑆𝐸𝐸𝑝𝑝(𝑡𝑡)�2⋅𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈)
,  𝑏𝑏 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)

�𝑆𝑆𝐸𝐸𝑝𝑝(𝑡𝑡)�2⋅𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈)
� (25) 

where standard error estimates associated with each pup survey (𝑆𝑆𝐸𝐸𝑝𝑝) were calculated 
separately [Table 1; Stenson et al. 2014, 2022]. Parameter ν is a variance-adjustment 
parameter included to facilitate model fitting and improve model goodness of fit. 
The data on pregnancy rates of sampled females are treated as a beta-binomial variable: 
specifically, given a sample of N females of age i in year t (NF(i, t)), the number of pregnant 
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females (NPr.obs(i, t)) is assumed to follow a beta-binomial distribution with probability 
determined by the model-estimated fecundity rates, and scale parameter η (such that the 
distribution converges to a standard binomial distribution as η approaches 0): 

𝑁𝑁𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑡𝑡)~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑁𝑁𝑁𝑁(𝑖𝑖, 𝑡𝑡), 1 𝜂𝜂� ⋅ 𝐹𝐹(𝑖𝑖, 𝑡𝑡), 1 𝜂𝜂� ⋅ [1 − 𝐹𝐹(𝑖𝑖, 𝑡𝑡)]� (26) 

The age composition data are treated as a multinomial variable. Specifically, samples of adult 
animals in year t were assorted by age into vectors of counts, Agedist.obs(t) = 
[NC(m,t),NC(m+1,t)… NC(36,t)], where m is the minimum age to be considered. These vectors 
are assumed to follow a multinomial distribution with frequency distributions corresponding to 
the model-predicted age distribution vectors (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)). To account for additional noise 
and sampling error in the age counts, we use a Dirichlet-multinomial formulation with fitted 
precision parameter τ:  

(𝑡𝑡)~𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏 ⋅ [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)]), 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. 𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)~𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�∑ 𝑁𝑁𝑁𝑁(𝑖𝑖, 𝑡𝑡)36

𝑖𝑖=𝑚𝑚 ,  𝜋𝜋(𝑡𝑡)� (27) 

We used model comparisons of likelihood-based information criteria to determine the best-
supported minimum age (see Model fitting section, below). 
The summed annual harvest/bycatch estimates are assumed to follow normal distributions: 

𝑜𝑜𝑜𝑜𝑜𝑜.𝐻𝐻0(𝑡𝑡)~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝐻𝐻0(𝑡𝑡), 𝑆𝑆𝐸𝐸𝐻𝐻𝐻𝐻) (28) 

𝑜𝑜𝑜𝑜𝑜𝑜.𝐻𝐻𝐴𝐴(𝑡𝑡)~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝐻𝐻𝐴𝐴(𝑡𝑡), 𝑆𝑆𝐸𝐸𝐻𝐻𝐻𝐻) (29) 

where the standard error values for observed harvest estimates correspond to an assumed CV 
of 0.1.  

Table 2. Summary and descriptions of the parameters included in the model 

Parameter Description 

Symbol Name  

𝑁𝑁0  Starting population abundance at t = 1 (1952) 

𝛽𝛽1 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1 Maximum pregnancy rate for adult females (logit transformed) 

𝛽𝛽2 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2  Age-effect on fecundity (pregnancy rate increases with age up to 8 years) 

𝜙𝜙𝐹𝐹  𝑃𝑃ℎ𝑖𝑖𝐹𝐹  Density-dependent effects on fecundity 

𝜃𝜃𝐹𝐹 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹  Shape-parameter for density-dependent effects on fecundity 

𝛿𝛿𝐹𝐹  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹  Effect of environmental conditions (NCI index) on fecundity 

𝜎𝜎𝐹𝐹  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹  Unexplained variation in annual fecundity 

𝛼𝛼0 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎0 Intercept for age-varying hazards fxn (10-yr-old log hazards) 

𝛼𝛼1 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎1 Parameter for age-varying hazards fxn (increased hazards for age <10 years) 

𝛼𝛼2 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎2 Parameter for age-varying hazards fxn (increased hazards for age >10 years) 

𝜙𝜙𝑆𝑆 𝑃𝑃ℎ𝑖𝑖𝑆𝑆 Density-dependent effects on survival (primarily juveniles) 

𝜃𝜃𝑆𝑆 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆 Shape-parameter for density-dependent effects on survival 

𝛿𝛿𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 Effect of environmental conditions (NCI index) on juvenile survival 

𝜎𝜎𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Unexplained variation in juvenile survival 
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Parameter Description 

Symbol Name  

𝜁𝜁 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 Parameter to scale density-dependent effects for adult animals by age 

𝜓𝜓1 𝑃𝑃𝑃𝑃𝑃𝑃1 Parameter 1 for fxn describing ice anomaly effects on juvenile mortality 

𝜓𝜓2 𝑃𝑃𝑃𝑃𝑃𝑃2 Parameter 2 for fxn describing ice anomaly effects on juvenile mortality 

𝛾𝛾‾𝐻𝐻0 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻0 Mean log hazard rate for YOY harvest/bycatch mortality 

𝛾𝛾‾𝐻𝐻𝐻𝐻 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻 Mean log hazard rate for adult (1+ year) harvest/bycatch mortality 

𝜎𝜎𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻  Unexplained variation in annual log hazard rates for harvest/bycatch mortality 

𝜏𝜏 𝑇𝑇𝑇𝑇𝑇𝑇 Precision parameter, Dirichlet-multinomial distribution of age-class samples 

ν 𝑁𝑁𝑁𝑁 Variance adjustment parameter for gamma distribution of pup counts 

η 𝐸𝐸𝐸𝐸𝐸𝐸 Scale parameter for beta-binomial distribution of female pregnancy status 

MODEL FITTING 
The observed data variables constrain the possible values of unknown parameters in the 
process model, allowing us to estimate posterior distributions for these parameters using 
standard Markov Chain Monte Carlo (MCMC) methods. We use vague prior distributions for 
most parameters (i.e., weakly informed based on biological feasibility but having no information 
specific to the analysis), including Gamma priors for 𝑁𝑁0 and 𝜃𝜃, Cauchy priors for unbounded 
parameters and half-Cauchy priors for parameters that were logically constrained to be positive, 
including ν, η, τ, and all variance parameters σ (Gelman 2006, Gelman et al. 2008). The 
Cauchy distribution has been suggested as an effective, uninformative prior because it has a 
taller peak than the Normal distribution, is leptokurtic (“fat tailed”), and has no defined mean, 
and thus provides wide potential bounds on parameter space, a tendency to shrink towards 0 
for non-significant parameters and minimized influence of the prior on the estimation of the 
posterior (Gelman et al. 2008). The half-Cauchy distribution is simply a Cauchy distribution that 
has been truncated to only have nonzero probability density for values greater than the peak 
(usually 0). For the ice-anomaly effect parameters (𝜓𝜓1 and 𝜓𝜓2) we used weakly-informed normal 
priors with means of 0 and 4 and standard deviations of 1 and 2 (respectively), as these values 
produced a broad range of potential functional relationships between ice anomalies and pup 
mortality that agreed well with existing information on ice-based pup mortality. For average 
harvest log-hazard ratios (𝛾𝛾‾𝐻𝐻0 and 𝛾𝛾‾𝐻𝐻𝐻𝐻) we used weakly-informed normal priors with means of 5 
and standard deviations of 2.  
We used R (R.Core.Team 2022) and Stan software (Carpenter et al. 2017) to code and fit the 
model, saving 20,000 samples after a burn-in of 1000 samples. We evaluated model 
convergence by graphical examination of trace plots from 20 independent chains and by 
ensuring that Gelman-Rubin convergence diagnostic (R-hat) was <1.1. We plotted and visually 
compared prior and posterior distributions for all parameters to assess the degree to which 
posteriors were distinct from priors. We conducted graphical posterior predictive checking to 
evaluate model goodness of fit, ensuring that out-of-sample predictive distributions of pup 
abundance and female pregnancy rates were consistent with distributions of observed data. We 
also calculated associated Bayesian-P values (using Pearson residuals as the test statistic to 
compare for observed vs. out-of-sample predicted data), with good model fit indicated by 0.05 < 
Bayesian-P < 0.95. As an additional goodness-of-fit check, we created “out-of-sample” hindcast 
projections of population dynamics to compare to the fitted model projections. Specifically, for 
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each out-of-sample projection we initiated a “new” 1951 population at 𝑁𝑁0, and then projected 
forward for T years with the process model parameterized by drawing from the joint posteriors of 
all parameters and with random effects drawn randomly from their appropriate sampling 
distributions (with the exception of harvest-based hazards, which were set to mean estimated 
values). In the case of a well-fit model, the estimated abundance projection should fall within the 
distribution of out-of-sample hindcast projections. 
We used an information theoretic approach to determine the best-supported minimum age (m) 
for inclusion in model fitting of age distributions (Equation (28)). We evaluated values of m from 
4 to 8 and used R package “Loo” (Vehtari et al. 2017) to calculate the “Leave-one-out cross 
validation information criterion” (LooIC). We limited LooIC calculations to likelihood posteriors 
computed from pup counts and pregnancy rate data but excluding age distribution likelihoods 
(since the number of age classes contributing to age distribution likelihoods differed across 
models). We then used the Loo package to conduct model comparisons, identifying the best 
supported model based on the lowest LooIC value or (equivalently) the highest expected log 
pointwise predictive density (ELPD) for a new data set (Vehtari et al. 2017). The model having 
the lowest LooIC or highest ELPD is the model most likely to correctly estimate new data points 
that were not included in model fitting.  
Model results are summarized by reporting the mean and 95% Credible Interval (CI) of the 
posterior distributions for base model parameters (Table 3) and derived parameters. We 
graphically compare hindcast projections of population abundance, pup production, pregnancy 
rates and age composition based on the Stochastic model with equivalent estimates based on 
the Deterministic model.  

MODEL SIMULATIONS 
We generated projections of future population dynamics under various scenarios by running 
Monte Carlo simulations of the process model, parameterized by drawing from the joint 
posteriors of all parameters and with random effects drawn randomly from their appropriate 
sampling distributions. To estimate functional carrying capacity (K), we initiated each of 20,000 
simulations with the final estimated population vector (based on model fitting to current data) 
and projected forward for 100 years, with harvest/bycatch hazards (ℎ𝐻𝐻0 and ℎ𝐻𝐻𝐻𝐻) forced to 0. 
The resulting distribution of simulated trajectories therefore included the effects of ice mortality, 
environmental/climatic conditions, stochasticity, and density-dependent effects, but not human-
caused mortality. The average abundance of these forward simulations generally stabilized after 
50 years, so we used the mean values (and 95% CI) of the abundance over the last 50 years of 
the 100-year time series to estimate equilibrium abundance in the absence of harvest. A key 
consideration for these future simulations is how environmental conditions and ice cover may 
change in the future. To explore the potential impacts of changes in these variables, we 
repeated the carrying capacity simulations under two different scenarios: 1) values of IC and 
NCI were drawn from their pre-2000 empirical distributions; and 2) values of IC and NCI were 
drawn from their post-2000 empirical distributions. The second scenario thus assumes that 
future conditions will be more similar to those observed since 2000 than to earlier conditions. 
We note that other future scenarios could be explored as well, including scenarios where both 
ice cover and environmental conditions show continued reductions over time. 

RESULTS 
The Stochastic model incorporated the age distribution data from the Newfoundland sample 
collection program into the model structure. Early in the time series, the age structure of this 
data set was dominated by animals aged 4-7 years, but beginning in the late 1990s, older age 
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classes sequentially became more important while younger animals comprised a smaller and 
smaller proportion of the time series, reaching a minimum by 2010. We interpret this as a 
decline in recruitment to the breeding population (Figure 6). Since 2010 there has been a slight 
increase in recruitment of younger animals to the sampled age structure, although animals aged 
20+ years old continue to dominate the time series.  

 
Figure 6. Proportion of samples comprised of different age classes (years) collected by year between 
1979-2019. Sample sizes for ages 4 to 20+ years are across the top 

Fitting the Stochastic model to the three independent data sets provides excellent convergence, 
with R-hat<1.1 for all parameters (Table 3). The best supported model included a minimum age 
(m) of 5 (Appendix 2). Graphical posterior predictive checks indicate excellent model fit, with 
observed data distributions corresponding closely to distributions of out-of-sample projected 
estimates (Figure 7) and Bayesian-P values of 0.134 and 0.265 for pup counts and pregnancy 
rate data, respectively. For all parameters the estimated posterior distributions are clearly 
distinct from prior distributions (Appendix 5). 
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Table 3. Summary of parameter estimates from model fitting, including the mean, standard deviation and 
lower/upper 95% quantiles of the posterior distributions. Also shown are r-hat statistics for each 
parameter, with values close to 1 indicating well mixed chains (and thus model cnvergence). Note that 
initial population size (𝑁𝑁0) is in millions of animals.  

Parameter  Mean SD CI95_lo CI95_hi r-hat 

𝑁𝑁0  2.256 0.155 2.019 2.523 1.031 

𝛽𝛽1 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1 2.697 0.621 1.759 3.824 1.022 

𝛽𝛽2 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 0.273 0.017 0.246 0.302 1.002 

𝜙𝜙𝐹𝐹 𝑃𝑃ℎ𝑖𝑖𝐹𝐹 1.098 1.183 0.272 3.348 1.016 

𝜃𝜃𝐹𝐹 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹 0.739 0.252 0.426 1.219 1.008 

𝛿𝛿𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹 0.299 0.141 0.064 0.533 1.022 

𝜎𝜎𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 0.422 0.083 0.287 0.560 1.047 

𝛼𝛼0 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎0 1.280 0.482 0.415 2.016 1.048 

𝛼𝛼1 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎1 0.141 0.078 0.022 0.278 1.023 

𝛼𝛼2 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎2 0.008 0.001 0.007 0.010 1.056 

𝜙𝜙𝑆𝑆 𝑃𝑃ℎ𝑖𝑖𝑆𝑆 2.001 1.589 0.549 5.438 1.018 

𝜃𝜃𝑆𝑆 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆 0.779 0.230 0.494 1.198 1.018 

𝛿𝛿𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 0.636 0.295 0.160 1.141 1.033 

𝜎𝜎𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1.039 0.204 0.746 1.400 1.029 

𝜁𝜁 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 8.470 5.391 2.632 20.421 1.012 

𝜓𝜓1,𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃1,𝐺𝐺 -0.178 0.842 -1.768 0.977 1.010 

𝜓𝜓1,𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃1,𝐹𝐹 -1.080 0.681 -2.295 -0.042 1.006 

𝜓𝜓2 𝑃𝑃𝑃𝑃𝑃𝑃2 1.655 0.723 0.489 2.850 1.011 

𝛾𝛾‾𝐻𝐻0 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻0 6.137 0.095 5.979 6.293 1.085 

𝛾𝛾‾𝐻𝐻𝐻𝐻 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻 3.970 0.098 3.811 4.130 1.091 

𝜎𝜎𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻 0.726 0.050 0.648 0.810 1.058 

𝜏𝜏 𝑇𝑇𝑇𝑇𝑇𝑇 146.806 14.597 124.830 172.699 1.061 

ν 𝑁𝑁𝑁𝑁 0.289 0.502 0.001 1.468 1.054 

η 𝐸𝐸𝐸𝐸𝐸𝐸 0.043 0.014 0.022 0.068 1.010 
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Figure 7. Graphical representation of posterior predictive check (PPC) diagnostics. A) median pup counts 
based on observed data (black line, “y”) compared to histogram of replicate out-of-sample or “new” 
observations (light grey bars, “yrep”) generated by the model. B) median proportion of females pregnant 
(black vertical line, “T(y)”) compared to a histogram of equivalent mean values for replicate out-of-sample 
or “new” observations (light grey bars, “T(yrep)”). In both plots the distribution of out-of-sample 
observations, drawn from the relevant probability distributions, are consistent with observed values, 
indicating a good fit of the model. 

Fecundity rates varied as a function of age for females older than 3 years (females aged 3 and 
younger rarely produce viable pups), increasing rapidly and reaching an asymptotic value by 
age 8 years. Fecundity rates also decreased as population abundance increased (Figure 8).  
As with fecundity, survival rates varied as a function of age, with first year survival (S0) 
substantially lower than adult survival (SA), especially at higher densities (Figure 8). Density-
dependent variation in survival is negligible for adults but substantial for juveniles, with an 
accelerating decrease in survival as abundance increases above 6 million animals (Figure 9).  
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Figure 8. Plots showing relationship between model-estimated vital rates and population abundance: A) 
adult female fecundity (proportion of females aged ≥8 years that are pregnant), and B) annual survival 
rate for juveniles (young of the year). Solid lines indicate mean estimated values and shaded bands 
indicate the associated 95% CI. 
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Figure 9. Plot of model-estimated relationship between annual survival rates and age: solid lines indicate 
mean estimated values and shaded bands indicate the associated 95% CI. The age-specific survival 
curves are plotted for two population densities to illustrate density-dependent effects. 

The Newfoundland Climate Index (NCI) had a significant negative effect on fecundity, 
accounting for some of the variation in pregnancy rates (Figure 10). After accounting for these 
fixed effects, environmental stochasticity resulted in substantial deviations from mean expected 
fecundity rates over time, with occasional “extreme” deviations such as those that occurred in 
2010-11 (Figure 11).  
The NCI also had significant negative effects on juvenile survival (Figure 10). Years with 
anomalously low ice cover in both the Gulf of St. Lawrence and the Front (e.g., downward 
spikes in Figure 4) were associated with reduced pup survival (Figure 12), although this 
relationship was dampened because the ice-survival relationship was already captured by the 
effects of NCI (for which ice cover was one of the contributing variables). Finally, after 
accounting for all fixed effects, environmental stochasticity resulted in significant deviations from 
mean expected hazard rates for juveniles, with a few notable periods of elevated log hazards 
such as the early 2000s (Figure 11) contributing to extremely low juvenile survival (Figure 11). 
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Figure 10. Plots showing relationships between model-estimated vital rates and the Newfoundland 
Climate Index (NCI). A) adult female fecundity (proportion of females aged ≥8 years that are pregnant), 
and B) annual survival rate for juveniles (young of the year). Solid lines indicate mean estimated values 
and shaded bands indicate the associated 95% CI. 
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Figure 11. Plots showing stochastic variation over time in model-estimated vital rates: A) deviations from 
expected adult female fecundity (proportion of females aged ≥8 years that are pregnant); B) deviations 
from expected log hazard rates for juveniles (young of the year or YOY); C) realized juvenile survival 
(including stochastic deviations). Solid lines indicate mean estimated values and shaded bands indicate 
the associated 95% CI. 
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Figure 12. Plot of model-estimated relationships between the ice anomaly index (IC: the proportional 
deviation from average ice cover values for 1969-2000) and the probability of pup (also known as young 
of the year or YOY) survival. The effects of IC are estimated separately for the breeding areas in the Gulf 
of St. Lawrence and the Front. Solid lines indicate mean estimated values and shaded bands indicate the 
associated 95% CI. Dashed grey lines encompass the 95% quantiles of the prior distribution for the 
functional relationship, as derived from the priors for the function parameters. 

Harvest/bycatch hazards varied substantially over the time series, with the magnitude of 
variation measured by parameter 𝜎𝜎𝐻𝐻 (Table 3). Per-capita harvest/bycatch hazard ratios for 
juveniles (YOY) were >8 times higher on average than equivalent hazard ratios for adults (𝛾𝛾‾𝐻𝐻0 
vs. 𝛾𝛾‾𝐻𝐻𝐻𝐻; Table 3). The estimated temporal variation in annual harvest hazard rates, after 
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adjusting for struck and loss, were consistent with observed variation in harvest/bycatch 
numbers (Figure 13). 

 
Figure 13. Plot showing temporal variation in model-estimated harvest/bycatch mortality for adults and 
beaters (also referred to as young of the year (YOY)  or juveniles), with observed data plotted for 
comparison (note that plotted model estimates have been adjusted for struck and loss in order to be 
comparable to reported deaths). Solid lines indicate mean estimated values and shaded bands indicate 
the associated 95% CI, assuming a coefficient of variation in reported harvests of 10%. 

When all of the estimated environmental and demographic effects, as well as harvest/bycatch 
mortality, are combined, the model results indicate that human removals represent the single 
most important driver of juvenile mortality up until 1985. However, since 1985, density 
dependent mortality and unexplained stochastic deviations have been a more substantial 
source of juvenile mortality, followed by anthropogenic removals between 1996 and 2006 
(Figure 14). Mortality attributable to ice anomalies and climate effects (NCI) are also important 
in some years, particularly in more recent decades (Figure 14). 
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Figure 14. Plot showing relative contributions of various sources of mortality to the total combined 
mortality rate for juveniles (also referred to as YOY). Mortality factors compared include removals from 
harvesting (taking into account struck and loss and incidental catches), mortality attributable to poor ice 
conditions, mortality attributable to climate effects, and baseline plus density-dependent mortality 
(including stochastic variation). The dashed line indicates what the expected value of baseline plus 
density-dependent mortality would be if stochastic variation were excluded.  

The various sources of mortality and fecundity are combined in the process model to generate 
projections of population dynamics. Using the Stochastic model, the 2019 estimate of pup 
production is 776,000 (95% CI 558,000- 1,011,000) and the total estimated abundance is 
4,667,000 (95% CI: 3,712,000- 5,679,000). The Stochastic model projections are generally 
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consistent with observed data sets in terms of temporal variation in adult pregnancy rates 
(Figure 15), pup counts (Figure 16), and relative age structure (Figure 17). When compared with 
observed data or equivalent projections from the deterministic model, the Stochastic model 
projections more closely adhered to variation in the three empirical time series: most observed 
data points (or their standard error bars) intersected the 95% CI bounds of the Stochastic model 
projections. In the case of the Deterministic model, the model provided a good fit to the 
reproductive data, in cases where sample size was greater than or equal to 40, which 
represented most years after 2000, but the fit to the pup production estimates and ability to track 
changes in age structure was not as good, particularly during the latter two decades (Figures 
16-17). 

 

Figure 15. Plot showing temporal variation in model-estimated pregnancy rates (for females ≥ 8 years) 
with observed data plotted for comparison: points indicate the mean proportion of sampled 8+ females 
each year that were pregnant, while error bars show 95% CI associated with the mean observed value 
based on the variance of a binomial sample. Model projections are plotted for the Stochastic Bayesian 
model (red) and the data used in the 2019 deterministic model (blue). The Deterministic model used the 
actual data when samples sizes were 40 or more and the smoothed value in years when samples sizes 
were less than 40 animals (Hammill et al. 2021). The shaded bands indicate the associated 95% CI that 
are generated by the stochastic model (red) and the non-parametric smoother in the deterministic model 
(blue). 
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Figure 16. Plot showing temporal variation in model-estimated pup (YOY) production with observed data 
plotted for comparison: points indicate mean estimated pup abundance for a given survey; error bars 
show 95% CI associated with the survey estimate. Model projections are plotted for the Stochastic 
Bayesian model (red) and the Deterministic model (blue). Solid lines represent mean estimated values; 
shaded bands indicate the associated 95% CI. 
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Figure 17. Plot showing temporal variation in model-estimated age structure considering specifically the 
proportion of animals 5-7 years old versus all animals 8 years old and older. Points indicate the mean 
proportion based on observation data, and error bars show 95% CI associated with the sampled 
proportion (based on variance of a binomial sample). Model projections are plotted for the Stochastic 
Bayesian model (red) and the Deterministic model (blue), with solid lines showing the mean estimated 
values and shaded band indicating the associated 95% CI. 

Total abundance is estimated by the model as a latent variable, although there are no empirical 
data to compare with. The estimated trends in population abundance (adults plus YOY) based 
on the Stochastic Bayesian model are shown in Figure 18, with corresponding estimates from 
the Deterministic model shown for comparison. The two models are generally consistent in their 
projections from 1951 through approximately 1990 but deviate after that point. The Deterministic 
model projected a relatively flat trend from 1995 – 2010, followed by a small decline from 2009 – 
2011, then a substantial increase from 2012 – 2019 to a historic high abundance of over 7 
million. In contrast, the Stochastic model indicates a stronger increasing trend between 1990-
1997 to a high of 6.6 million, followed by a substantial decline between 2000 – 2011 to 4.2 
million, and then a modest increase from 2012 – 2019 to 4.7 million. Despite these differences, 
it is notable that the uncertainty intervals of the two model projections overlap each other for 
much of the time series with the exception of 1950-58, and since 2015 (Figure 18). 
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Figure 18. Plot showing temporal variation in model-estimated abundance for the Stochastic Bayesian 
model, with a start age of 5 years (red) and the deterministic model (blue). Solid and dashed lines 
represent mean estimated values for the Stochastic and Deterministic models, respectively, while shaded 
bands indicate the associated 95% CI. 

As an additional posterior predictive check of the Stochastic model goodness-of-fit, we used 
Monte Carlo methods to generate “out-of-sample” hind-cast projections of population dynamics 
(initiated with the estimated abundance in 1951 and projected forward with random effects not fit 
to the data). The distribution of hind-cast, out-of-sample projections encompasses the actual 
model estimated trends in population abundance, further supporting the goodness of fit of the 
Stochastic model (Figure 19). However, it is worth noting that since approximately 2006 the 
fitted model trend falls near the lower 95% quantile of the distribution of hindcast simulations, 
reflecting the fact that stochastic deviations in juvenile mortality were consistently elevated over 
this period (Figure 11). This suggests a persistent shift in environmental and/or anthropogenic 
mortality sources.  



 

32 

 

Figure 19. Plot showing the distribution of random hind-cast model projections of harp seal abundance 
over time (grey shaded band with black line showing mean) compared to the actual model-estimated 
trends (red line) for a start age of 5 years old. For hind-cast projections, the model was initiated with the 
estimated 1951 abundance, all parameters were drawn randomly from joint posterior distributions, and 
the process model was iterated forward with random effects drawn from appropriate sampling 
distributions but not fit to data. Thus each iterated hind-case simulation represents an “out-of-sample” 
model projection of a possible population trajectory, given the estimated range of environmental 
stochasticity. For a well-fit model the estimated trend should fall within the distribution of out-of-sample 
projections. 

To estimate realized carrying-capacity (K) in the absence of human-caused mortality, future 
projections of population dynamics were generated using Monte Carlo simulations of the model 
(with harvest/bycatch hazards forced to 0) under two scenarios of future ice cover and 
environmental conditions. The distribution of future projections stabilized after several decades 
(Figure 20), with the mean long-term abundance for each scenario corresponding to an 
equilibrium abundance estimate (K) in the absence of harvest/bycatch mortality. In the first 
scenario, climate index and ice cover variables were drawn randomly from their pre-2000 
distributions which produced an estimated equilibrium abundance of 7.6 (SD=0.09, 95% 
CI=7.43-7.76) million harp seals. In a second scenario, climate index and ice cover variables 
were drawn from their post-2000 distributions to represent current conditions. This resulted in an 
equilibrium estimate of 6.79 (SD=0.07, 95% CI=6.68-6.91) million harp seals. 
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Figure 20. Plots showing future projected abundance of harp seal populations, with harvest/bycatch 
mortality forced to 0, under two alternative scenarios of ice cover and environmental conditions: A) ice 
cover anomalies (IC) and Newfoundland Climate Index (NCI) are drawn from the empirical distributions 
observed over the period 1969 – 1999; and B) IC anomalies and NCI are drawn from the empirical 
distributions observed over the period 2000 – 2020. For both plots, the red line indicates the mean 
expected value over the last 50 years of the 100-year projection, and can be interpreted as “K”, or the 
expected equilibrium abundance (for the specified scenario) in the absence of direct human mortality. 

DISCUSSION 
Previous runs of the Deterministic population model had suggested that abundance declined 
through the 1950s and 1960s to an estimated minimum of approximately 2 million animals in 
1972, before recovering to an estimated 7.6 (95% CI=6.55-8.82) million animals in 2019 (DFO 
2020; Hammill et al. 2021). Prior to the 2019 assessment, the Deterministic population model 
had provided a reasonable fit to the pup abundance and reproductive rate data. However, at the 
last assessment the model fit was not only poorer, but a marked change in population trend was 
identified, changing our perception from one of a population that had recovered rapidly since 
1982, peaking at 7.4 million animals in 2008 then levelling off at just over 7 million animals, to 
one of a population that recovered rapidly since 1982, had levelled off at approximately 5.5 
million animals in 1996 and after a slight dip in 2011, had showed renewed growth in the 
absence of high harvests, increasing to 7.6 million animals by 2019 (Hammill et al. 2015, 2021). 
Hammill and Stenson (2009) concluded that a deterioration in the model fit to the survey data 
pointed to underlying problems relating to model assumptions and or structure, such as failure 
to consider ice-related mortality and its impact on juveniles. Incorporating ice-related mortality 
into the assessment model improved the fit somewhat, until recently. In the 2019 assessment, 
however, the poor fit of the assessment model to the 1990, 1994, 2008 and 2017 aerial survey 
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estimates further indicated that the Deterministic model was unable to capture the full range of 
dynamics present in the available data sets.  
The Stochastic model presented here shares many features with the previous Deterministic 
model, in that the process model tracks fecundity, survival, and abundance of multiple (36 in 
stochastic, 27 in deterministic) year classes. To aid in comparing the two models, we used (to 
the greatest extent possible) the same input data as presented in Hammill et al. (2021). 
However, there are several important ways in which the Stochastic model structure differs from 
the Deterministic model, summarized in Table 4. The key difference is the relaxation of the 
assumption that demographic processes are fixed (deterministic) and the allowance for 
environmental stochasticity in vital rates, which is achieved by fitting the process model to 
observed data within a hierarchical Bayesian framework. A key advantage of the Bayesian 
approach is the ability to combine multiple sources of data and fully characterize uncertainty 
within a single, integrated modelling framework (Brandon and Wade 2006). The hierarchical 
framework can allow for estimation of missing states as well as the sharing of information 
across data sets or surveys, which can improve estimation and increase precision (Sigourney et 
al. 2021). Moreover, the use of prior information can be included in a formalized manner when 
direct information is lacking. Another important difference was that the Stochastic model 
incorporated age-structure information from the Newfoundland sampling program into the fitting 
process. The inclusion of age structure data greatly improved the power to estimate variation in 
age-specific survival rates.  
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Table 4. Comparison of the features and attributes of two models used to estimate NW Atlantic harp seal 
abundance and population dynamics: the Stochastic, Bayesian hierarchical model and the previous 
deterministic model. The term “model-fit” refers to parameters estimated by fitting to data, “fixed” refers to 
parameters set by the user (i.e., based on expert opinion or on previously published information). 
Acronyms used: “fxn” = “function”; “D-D” = “density dependent”; PHF = “Proportional Hazards Function”; 
“M-Ice” = excess mortality associated with ice cover anomalies. 

Feature/Attribute Bayesian hierarchical Stochastic model Deterministic model 

Data sets 

Pup counts Used for fitting, assume gamma distribution Used for fitting, assume normal 
distribution 

Female pregnancy 
rates (fecundity) 

Used for fitting, assume beta-binomial 
distribution with age covariate (use raw data 
for fitting)  

Used for fitting, when N>40, but 
“smoothed” prior to model fit if samples 
<40; assume binomial distribution  

Harvest data Used for fitting, assume normal distribution 
(accounts for measurement uncertainty and 
struck and loss) 

Not used for fitting, but included as 
constants for calculations of annual 
population dynamics 

Age structure data 
(adults) 

Used for fitting (for survival schedule), 

assume Dirichlet-multinomial distribution to 
account for over-dispersion/variance 

Not used as input  

Ice cover Annual anomalies in ice cover of the Gulf and 
Southern Labrador from Canadian Ice Service 
used as covariate of juvenile mortality: effect 
estimated as a continuous hazards function  

Annual anomalies in ice cover of the Gulf 
and Southern Labrador from Canadian Ice 
Service used as covariate of juvenile 
mortality: effect assumed, not estimated, 
with-adhoc setting of mortality threshold 

Process Model 

Fecundity function Model-fit: non-linear, 2-parameter logit fxn for 
age, assumed to asymptote after 8yrs, also 
includes D-D (2 parameter theta-logistic fxn) 
and environmental stochasticity terms 
(hierarchical random effect) 

Fixed max rate for 8+, D-D is model-fit 
using 2 parameter theta-logistic fxn (theta 
parameter fixed). Environmental effects 
on K fixed. No stochasticity. Age 
differences allowed using Gaussian 
copula  

Mortality, Juvenile Model-fit, incorporates competing hazards 
using PHF (baseline, D-D, M-Ice, harvest), 
allows for env. stochasticity. Non-linear D-D 
and M-ice functions are also model-fit (D-D 
pars independent from fecundity). Competing 
hazards from harvest treated as model-fit, 
time-varying hierarchical parameters. 

Mortality of adults or juveniles fixed, or 
juvenile mortality fixed as a multiplier of 
adult mortality which was estimated in 
earlier models. In 2019 adult mortality 
fixed and juvenile mortality was estimated 
and. Allows for M-Ice, but relationship 
between M-Ice and ice cover is 
assumed/fixed, not fit. Allows for D-D, but 
D-D function is same as Fecundity D-D 
function (i.e., same “K” parameter, fixed 
theta). Additional mortality from reported 
harvest incorporated deterministically 
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Feature/Attribute Bayesian hierarchical Stochastic model Deterministic model 

Mortality, Adult 
(1+) 

Model-fit; age variation allowed using 2-
parameter, non-linear PHF, with competing 
hazards from harvest treated as model-fit, 
time-varying hierarchical parameters 

Model-fit in earlier models, fixed in most 
recent model; no age-variation. Additional 
mortality from reported harvest 
incorporated deterministically 

Initial abundance Model-fit; initial age structure set as the 
stationary distribution associated with 
estimated vital rates  

Model-fit; initial age structure assumed 

Annual dynamics Standard age-structured transitions, 36 age 
classes tracked, survival varies by age  

Standard age-structured transitions, 27 
age-classes (survival constant across 1+ 
ages). Age classes not tracked 

Model fitting 

Method  Bayesian MCMC: all parameters estimated as 
joint posteriors fit to all 4 data sets (pup 
counts, pregnancy rates, harvest data and 
age structure) with appropriate distributions 
for each. Vague priors for all params except 
ice mortality function parameters (for which 
moderately-informed priors) 

“Pseudo-likelihood”: brute-force sims used 
to find minimum combined sum of 
squared Pearson residuals for pup counts 
and pregnancy rates (for 8+ females). 
This assumes both observed variables 
are normally distributed, but no formal 
variance weighting.  

Evaluation  Ensure model convergence and mixing of 
independent chains, posterior predictive 
checks and goodness of fit diagnostics. 
Visually evaluate agreement between 
predicted trends and raw data sets 

Visually evaluate agreement between 
predicted trends and raw data sets 

Because the samples used to determine age structure of the population were collected for a 
variety of reasons, it is possible that some age groups, particularly younger seals, may have 
been over or under estimated. However, the younger age classes are most likely to be impacted 
first by changes in density-dependent or environmental conditions (e.g. as per Eberhardt 2002) 
and so, excluding these younger animals in model fitting may affect our ability to detect changes 
in demographic rates, introducing additional lags between when significant demographic 
changes might occur and when they can be fully incorporated into the population model. The 
utilization of information theory and model comparisons via LooIC allowed for alternative 
versions of the model (with differing minimum age) to be assessed objectively in terms of the 
relative degree of support (see Appendix 3). This approach suggested more support for a 
minimum age of 5 years old to be included in age structure data used for model fitting. Further 
evaluating the impact of including younger age classes on model estimates is one area that 
could be investigated further.  
Climate change is expected to have a negative impact on harp seals through loss of ice for 
breeding and likely through impacts on food resources (Stenson et al. 2020b). The Stochastic 
model uses a proportional hazards formulation to model survival, which provides a 
mathematically coherent way to incorporate and estimate multiple competing sources of 
mortality (hazards). Using this approach, uncertainty in reported catches, ice cover during the 
pupping season and an environmental index (Cyr and Galbraith 2021) were identified as factors 
affecting juvenile survival. Differences in mean ice cover in the Gulf and at the Front during peak 
pupping were used to build the ice anomaly index. This index provides insights into conditions 
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when the pups are born, but harp seal YOY require a stable ice platform for a period of 4-6 
weeks after birth. Unfortunately, this index as currently calculated is unable to capture changes 
in ice cover due to storms, or early breakup, after pupping has occurred, which likely limits its 
sensitivity as a predictive variable for pup survival. The more generalized Newfoundland Climate 
Index (NCI) incorporates information on water and air temperatures, windspeeds and total 
accumulated ice cover in Atlantic Canada over the entire year. Because the NCI incorporates 
ice cover variables, there is some degree of overlap and co-linearity between the NCI and the 
ice anomaly index. The two indices are still somewhat distinct: for example, the ice-anomaly 
represents conditions at peak pupping, whereas the NCI includes total accumulated ice over the 
season, and ice cover is only one of many variables contributing to the composite NCI, which 
reflects general environmental (oceanographic) conditions in the Northwest Atlantic (Cyr and 
Galbraith 2021). However, in our fitted Bayesian model the estimated NCI effects on survival 
and pregnancy rate were quite strong, whereas the estimated effects of ice-anomaly were 
weaker, suggesting that the NCI effects might be accounting for much of the mortality that would 
otherwise have been attributable to ice anomalies. Further work is needed to better quantify 
changes in the quality of the ice platform during the 6 week period critical for YOY, as well as 
understanding the contribution of other environmental factors to juvenile survival. The use of 
proportional hazards provides a useful framework allowing for these questions to be explored. 
The Stochastic model provided a 2019 pup production estimate of 776 thousand and a total 
abundance estimate of 4.7 million, which is approximately 62% of the estimated 2019 total 
abundance of 7.6 million produced by the Deterministic model (Hammill et al. 2021). The higher 
estimate from the Deterministic model reflects multiple differences in the two models (Table 4), 
perhaps most importantly the limiting assumption of the Deterministic model that juvenile 
mortality is fixed over the entire time series, and thus unexplained increases in mortality (such 
as those that have occurred since 2000; Figure 11B) cannot be captured. Once harvesting 
declined, the fixed mortality rate of the deterministic model inevitably assumed an increase in 
population abundance. In the Stochastic model, juvenile mortality from density-dependent and 
density-independent factors (including poor ice conditions and climate forcing) were not 
assumed to be fixed, and thus captured the effects of increased mortality after 2000. In the 
absence of high harvests, these sources of natural mortality are (and likely will continue to be) 
the major factors driving the dynamics of this population (Figure 14). Recent assessments of 
grey seals also resulted in downward revisions to estimates of total abundance of a similar order 
of magnitude due to significant changes in how juvenile mortality is incorporated into 
assessment models. Both of these cases highlight the importance of improving our 
understanding of this key parameter (Rossi et al. 2021).  
Another important advantage of the integrated Stochastic Bayesian model is the ease with 
which the fitted process model can be adapted for generating forward projections of population 
dynamics, accounting for parameter uncertainty (by drawing from the joint posterior distribution 
of all parameters) and using appropriate distributions of random effects. We took advantage of 
this feature to explore the potential equilibrium abundance (K) in the absence of harvest 
mortality, under differing assumptions about future variation in environmental conditions (i.e., ice 
anomalies and NCI index). Comparing the results of future simulations under temporal 
distributions of environmental variables corresponding to pre-2000 conditions, vs. post-2000 
conditions, shows compellingly that the effective K for harp seals has decreased over recent 
decades, with an equilibrium abundance approximately 1 million seals lower than was expected 
under pre-2000 conditions. As environmental and ice conditions deteriorate, K is also expected 
to continue to decline, affecting juvenile survival first, unless harp seals are able to adapt by 
finding suitable environmental and ice conditions further north.  
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In summary, the Stochastic model improves upon the Deterministic model in several ways, 
including: 1) variables that were treated as fixed constants in the Deterministic model are now 
treated as estimated parameters in the Stochastic model, allowing for data-driven estimates of 
annual age-specific survival, density-dependent effects, mortality from ice anomalies, and 
effects of environmental conditions on fecundity and survival; 2) the Stochastic model allows for 
environmental stochasticity in fecundity and survival; 3) multiple causes of death - baseline 
mortality, age and density-dependent effects, pup mortality due to poor ice cover, 
harvest/bycatch mortality - are incorporated as competing risks using a proportional hazards 
formulation, allowing for a more consistent and mathematically coherent treatment of these 
effects; and 4) model fitting is conducted using a hierarchical Bayesian state-space approach 
that allows for more robust characterization of uncertainty, disentanglement of process error 
from observer error, and incorporation of multiple data sources with different distributions and 
variance structures (Buckland et al. 2004, Wang 2009, Williams et al. 2017). Use of the 
Stochastic model for future assessments, and for exploring potential consequences of a 
changing climate, will help strengthen and support management of this iconic species.  
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APPENDICES 

Appendix 1, Table A1.1. Age-specific pregnancy rates of female harp seals sampled in Newfoundland and Labrador waters 1954 to 2019 from 
Stenson et al. (2020a) and used in Hammill et al (2021) and in current paper. Rates are based on the proportion of pregnant females in each 
particular age class (Stenson et al. 2020a). 

Year Age (y) # sample # animal 
pregnant 

Age (y) # sample # animal 
pregnant 

Age (y) # sample # animal 
pregnant 

Age (y) # sample # animal 
pregnant 

Age (y) # sample # animal 
pregnant 

1952 4 0 NA 5 0 NA 6 0 NA 7 0 NA 8 0 NA 
1953 4 0 NA 5 0 NA 6 0 NA 7 0 NA 8 0 NA 
1954 4 4 0 5 3 1 6 3 2 7 16 12 8 33 29 
1964 4 11 0 5 9 1 6 2 1 7 4 3 8 25 22 
1965 4 30 1 5 44 5 6 37 20 7 38 27 8 109 96 
1966 4 7 0 5 9 1 6 17 6 7 11 8 8 49 43 
1967 4 10 0 5 19 4 6 33 20 7 29 28 8 123 109 
1968 4 27 0 5 19 6 6 20 14 7 12 11 8 55 48 
1969 4 25 1 5 25 4 6 16 7 7 28 23 8 165 146 
1970 4 13 0 5 13 3 6 12 6 7 10 9 8 107 92 
1978 4 40 1 5 38 23 6 20 18 7 9 6 8 0 NA 
1979 4 4 1 5 1 1 6 0 NA 7 1 1 8 8 4 
1980 4 2 0 5 2 1 6 1 1 7 0 NA 8 12 9 
1981 4 5 1 5 4 3 6 2 1 7 7 6 8 17 14 
1982 4 4 0 5 5 2 6 1 1 7 4 3 8 3 1 
1985 4 4 0 5 3 1 6 5 2 7 3 3 8 1 1 
1986 4 1 1 5 0 NA 6 2 1 7 1 0 8 11 8 
1987 4 12 2 5 8 3 6 9 7 7 4 4 8 24 15 
1988 4 17 2 5 6 1 6 3 3 7 0 NA 8 19 14 
1989 4 8 0 5 9 0 6 6 2 7 3 2 8 25 21 
1990 4 8 0 5 6 1 6 3 1 7 1 0 8 10 6 
1991 4 10 0 5 11 2 6 7 4 7 3 1 8 29 18 
1992 4 9 2 5 11 3 6 7 3 7 8 6 8 32 21 
1993 4 11 0 5 17 2 6 7 0 7 5 4 8 35 16 
1994 4 23 1 5 15 2 6 14 6 7 6 2 8 40 33 
1995 4 10 0 5 13 6 6 4 2 7 5 2 8 26 14 
1996 4 8 0 5 6 0 6 4 1 7 1 1 8 37 24 
1997 4 5 0 5 4 0 6 10 3 7 2 2 8 36 26 
1998 4 6 0 5 10 3 6 9 2 7 4 2 8 36 21 
1999 4 6 0 5 7 0 6 17 4 7 15 6 8 60 35 
2000 4 1 0 5 9 3 6 6 4 7 5 2 8 42 29 
2001 4 2 0 5 0 NA 6 2 2 7 3 0 8 39 26 
2002 4 2 0 5 4 1 6 5 3 7 16 9 8 71 30 
2003 4 1 0 5 3 2 6 2 1 7 3 2 8 90 57 
2004 4 2 0 5 5 0 6 5 1 7 1 0 8 77 23 
2005 4 9 1 5 9 0 6 13 2 7 7 0 8 86 54 
2006 4 2 0 5 0 NA 6 0 NA 7 0 NA 8 119 57 
2007 4 1 0 5 5 0 6 3 1 7 2 2 8 84 62 
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Year Age (y) # sample # animal 
pregnant 

Age (y) # sample # animal 
pregnant 

Age (y) # sample # animal 
pregnant 

Age (y) # sample # animal 
pregnant 

Age (y) # sample # animal 
pregnant 

2008 4 6 0 5 3 0 6 2 0 7 0 NA 8 61 43 
2009 4 1 0 5 1 0 6 1 0 7 1 1 8 105 59 
2010 4 0 NA 5 0 NA 6 0 NA 7 1 0 8 114 35 
2011 4 3 0 5 2 0 6 0 NA 7 0 NA 8 153 30 
2012 4 2 0 5 1 0 6 0 NA 7 0 NA 8 12 5 
2013 4 1 0 5 0 NA 6 0 NA 7 1 0 8 11 6 
2014 4 2 0 5 0 NA 6 1 0 7 1 0 8 76 65 
2015 4 0 NA 5 1 0 6 0 NA 7 3 0 8 19 15 
2016 4 7 0 5 4 1 6 6 2 7 4 3 8 93 69 
2017 4 7 0 5 8 0 6 0 NA 7 2 0 8 50 29 
2018 4 10 0 5 6 0 6 3 1 7 2 1 8 69 51 
2019 4 5 0 5 4 0 6 2 0 7 4 1 8 110 80 
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Appendix 2: Determining optimal minimum age for inclusion in model fitting 
The Stochastic model incorporated age-structure information from the Newfoundland sampling 
program into the fitting process, enabling the model to converge. Seals of all ages have been 
collected under a variety of programs designed for different objectives. It is therefore possible 
that some age groups, mostly likely the younger who do not have adult pelages, may be over or 
under estimated in age structure.   
In the previous assessment, the Deterministic model was fit to the reproductive rates of females 
8 years and older and the pup production estimates from the surveys. Animals aged 8 y and 
older were selected because examination of the pelage type of both males and females 
indicated that by the age of 8, over 90% of the seals had the full adult or ‘spotted harp’ pelage 
and would have been randomly sampled in the collections. Also, the 8+ animals are also very 
close to maximum size (length and weight) and these animals of 8 yrs or older are very difficult 
to distinguish based on age. Therefore, samples of these older animals are thought to provide 
an unbiased age-structure sample of the ‘adult’ population. This was similar to the findings of 
Roff and Bowen (1983, 1986) who considered that samples including animals aged 7 years and 
older represented an unbiased age structure of the population. However, while excluding 
younger ages from model fitting reduces concerns about potential sampling bias, there is an 
associated penalty in terms of reduced sample sizes and statistical power. This can be 
especially problematic when ages are excluded from the bottom end of the age distribution. 
Generally, the dynamics of a population are most sensitive to changes in adult survival. 
However, adult survival tends to be high and shows little inter-annual variation, whereas juvenile 
survival can vary considerably between years depending on density-dependent and 
environmental (density-independent) factors. Subsequent changes in cohort strength of younger 
age classes can have a significant impact on population trends (Caswell 2001; Eberhardt 2002; 
Harkonen et al. 2002). Excluding younger animals from the analysis (animals 0-6 y old) 
therefore reduces the model’s ability to track changes in juvenile mortality, particularly in the last 
5-10 years of the time series, due to the time-lag between when changes are likely to occur 
(ages 0-6 y) and when they will be detected, as it takes time for them to be fully recruited into 
the population model (ages 7 y and older). 
The Stochastic model utilizes the age distribution data of both males and females obtained as 
part of the Newfoundland sampling program. A change in the recruitment of younger animals to 
the population is evident based on a cursory examination of the raw age structure data over 
time (Figure 6). The younger age classes initially dominated the age structure in the sampled 
population, but over time the age structure reflected an increasingly ageing population, with 
samples dominated by animals 16+ years since 2009 (although in some years the sample sizes 
are small, Figure 6). Juvenile mortality was thought to be extremely high in 2010 and 2011 due 
to very poor ice conditions (Stenson et al. 2014). This spike of juvenile mortality would not be 
expected to appear in the model until 2018 with a minimum age of 8, however lower recruitment 
is apparent by 2014 using a minimum age of 4 years old. Similarly, an increase in juvenile 
survival over the last 5 years of the data set would not be detectable when the minimum age is 
7 or 8 (since those younger ages do not make it into the sample by the end of the time series) 
but is apparent with minimum age of 4 or 5 (Figure 6).   
We ran multiple model fits to explore the impacts of changing the minimum age (m) to be 
included in the age structure dataset used for model fitting. We used an information theoretic 
approach to compare models with different values of m (4 – 8 years) to select the best 
supported model. Specifically, we calculated the “Leave-one-out cross validation information 
criterion” (LooIC) for each model (using the Loo package in R) and we identified the best 
supported model based on the lowest LooIC value or (equivalently) the highest expected log 
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pointwise predictive density (ELPD) for a new data set. Similar to AIC comparisons of models fit 
by Maximum Likelihood, the Bayesian-based LooIC comparison can be used to identify the 
best-supported model based on maximizing likelihood while penalizing for additional fitted 
parameters. LooIC is generally preferred over AIC as it utilizes the full joint posterior, rather than 
just the point estimate. The model having the lowest LooIC (or highest ELPD) is thus both the 
most parsimonious and most likely to correctly estimate new data points (or data points 
excluded from model fitting, via Leave-one-out cross validation).  
Varying the minimum age included in model fitting was associated with changes in the 
estimated values of pup production and abundance, particularly for the years since 2010 (Figure 
A2.1). In general, as the minimum age was reduced, estimates of pup production and total 
abundance in 2017 and 2019 increased, while the uncertainty around these estimates 
decreased (Table A2.1). The best supported model had values of m = 5 years (Table A2.2) This 
model was used for generating all reported statistics, figures, and derived parameters.  



 

47 

 
Figure A2.1. Plots showing changes in estimates of pup production (top), total abundance (bottom) with 
model runs that included different minimum age classes (m) in model fitting. The dotted lines show the 
95% credibility intervals for the model runs with m = 5 years (red). 
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Appendix 2, Table A2.1. Model derived statistics of pup production and total abundance for 2017 and 
2019, including estimates of means, coefficients of variation (CV) and 95% Credibility Intervals (95% CI), 
generated from models fit to data sets with different minimum ages (m) in age distributions. Refer to 
methods for more details on alternative models. Survey estimates of pup abundance are found in Table 1. 

Estimates 

Min. 
Age (m) Statistic 

Pup prod., 
2017 

Pup prod., 
2019 

Abundance, 
2017 

Abundance, 
2019 

5 

Mean 735,000 776,000 4,595,000 4,667,000 

CV (%) 11 15 10 11 

CI95_lo 568,000 558,000 3,698,000 3,712,000 

CI95_hi 890000 1,011,000 5,529,000 5,679,000 

6 

Mean 695,000 700,000 4,443,000 4,434,000 

CV (%) 12 16 11 11 

CI95_lo 518,000 481,000 3,500,000 3,432,000 

CI95_hi 847,000 930,000 5,368,000 5,441,000 

7 

Mean 606,000 617,000 4,074,000 4,017,000 

CV (%) 18 19 14 14 

CI95_lo 386,000 386,000 2,935,000 2,838,000 

CI95_hi 873,000 873,000 5,126,000 5,100,000 

8 

Mean 535,000 551,000 3,660,000 3,599,000 

CV (%) 21 21 15 16 

CI95_lo 320,000 337,000 2,551,000 2,432,000 

CI95_hi 751,000 787,000 4,721,000 4,706,000 
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Appendix 2, Table A2.2. Results of model comparison using “Leav-one-out cross-validation information 
criterion” (LooIC). The LooIC criteria was used to evaluate relative degree of support for six alternative 
models, which differed in terms of the minimum age (m) included in the age structure data used for model 
fitting. The model with minimum LooIC or (equivalently) maximum expected log pointwise predictive 
density difference (ELPD_Loo) has the greatest likelihood of correctly predicting data points that were 
excluded from model fitting. Models are sorted based on relative degree of support, as measured by the 
difference (ELPD_diff) between the associated ELPD_Loo values and that of the best-supported model. 
Also shown are the standard error of the differences (SE diff), standard error of ELPD_Loo (SE elpd loo), 
the effective number of parameters (P_loo) and standard error (SE_P_loo), and the standard error of 
LooIC (SE LooIC). 

m Elpd diff SE diff Elpd Loo 
SE Elpd 
Loo P loo SE P Loo LooIC SE LooIC 

5 0.0 0.0 -545.8 46.6 36.3 5.6 1091.6 93.2 

4 -1.6 1.7 -547.4 46.9 35.6 5.2 1094.8 93.8 

6 -2.0 1.5 -547.7 46.7 38.5 5.7 1095.5 93.4 

7 -7.1 2.5 -552.9 47.4 38.7 5.8 1105.8 94.9 

8 -9.0 3.5 -554.8 47.3 36.6 4.9 1109.6 94.6 
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Appendix 3: Reported catches 

Table A3.1. Reported catches from commercial and subsistence harvests in the Canadian Arctic (Arctic), 
Greenland, the Canadian commercial harvest consisting of young of the year (YOY)(Can pup) and 
animals 1 year and older (Can 1+) and estimated removals from commercial fisheries represented by 
animals aged 1 year and older (Bycatch Age 1+) and YOY (Bycatch YOY). From Stenson and Upward 
(2020). 

YEAR Arctic Greenland Can pup Can 1+ 
Bycatch 
Age 1 +  

Bycatch 
YOY 

1952 1784 16400 198063 109045 0 0 

1953 1784 16400 197975 74911 0 0 

1954 1784 19150 175034 89382 0 0 

1955 1784 15534 252297 81072 0 0 

1956 1784 10973 341397 48013 0 0 

1957 1784 12884 165438 80042 0 0 

1958 1784 16885 140996 156790 0 0 

1959 1784 8928 238832 81302 0 0 

1960 1784 16154 156168 121182 0 0 

1961 1784 11996 168819 19047 0 0 

1962 1784 8500 207088 112901 0 0 

1963 1784 10111 270419 71623 0 0 

1964 1784 9203 266382 75281 0 0 

1965 1784 9289 182758 51495 0 0 

1966 1784 7057 251135 72004 0 0 

1967 1784 4242 277750 56606 0 0 

1968 1784 7116 156458 36238 0 0 

1969 1784 6438 233340 55472 0 0 

1970 1784 6269 217431 40064 17 60 

1971 1784 5572 210579 20387 85 440 

1972 1784 5994 116810 13073 141 481 

1973 1784 9212 98335 25497 107 361 

1974 1784 7145 114825 32810 42 141 

1975 1784 6752 140638 33725 66 220 

1976 1784 11956 132085 32917 169 926 

1977 1784 12866 126982 28161 309 1324 

1978 2129 16638 116190 45533 613 2763 
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YEAR Arctic Greenland Can pup Can 1+ 
Bycatch 
Age 1 +  

Bycatch 
YOY 

1979 3620 17545 132458 28083 572 3031 

1980 6350 15255 132421 37105 274 2540 

1981 4672 22974 178394 23775 406 3775 

1982 4881 26927 145274 21465 347 3470 

1983 4881 24785 50058 7831 462 4547 

1984 4881 25829 23922 7622 429 3714 

1985 4881 20785 13334 5701 642 4345 

1986 4881 26099 21888 4046 896 5213 

1987 4881 37859 36350 10446 1864 9047 

1988 4881 40415 66972 27074 1406 6993 

1989 4881 42971 56346 8958 726 7918 

1990 4881 45526 34402 25760 795 1974 

1991 4881 48082 42382 10206 608 8094 

1992 4881 50638 43866 24802 6411 16624 

1993 4881 56319 16401 10602 7732 19244 

1994 4881 57373 25223 36156 10836 36768 

1995 4881 62749 34106 31661 6341 14252 

1996 4881 73947 184856 58050 18745 10896 

1997 2500 68816 220476 43734 5188 13860 

1998 1000 81262 251403 31221 973 3584 

1999 500 93117 237644 6908 6325 9843 

2000 400 98462.5 85035 7020 1632 9890 

2001 600 85427.5 214754 11739 4992 15072 

2002 1000 66734.5 297764 14603 3901 5642 

2003 1000 66149 280174 9338 1912 3533 

2004 1000 70586.5 353553 12418 11228 24642 

2005 1000 91687.5 323800 6029 8284 18094 

2006 1000 94033.5 346426 8441 5526 16130 

2007 1000 82825.5 221488 3257 2990 6460 

2008 1000 80444 217565 285 2360 4920 

2009 1000 71861.5 76688 0 972 1303 
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YEAR Arctic Greenland Can pup Can 1+ 
Bycatch 
Age 1 +  

Bycatch 
YOY 

2010 1000 89905 68654 447 1338 2618 

2011 1000 73462 40371 18 712 1402 

2012 1000 54659.5 71319 141 812 2074 

2013 1000 65241 94310 3612 27 150 

2014 1000 63028 59616 50 214 952 

2015 1000 61767 35302 80 196 844 

2016 1000 55520 61016 7344 139 464 

2017 1000 47515.5 70270 11472 53 173 

2018 1000 58614.3 56135 4887 161 450 

2019 1000 58614.3 29913 2125 148 563 
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Appendix 4: Evaluation of uncertainty in reported catches. 
There is an unknown level of uncertainty in the reported takes. We examined the impact of 
uncertainty on parameter estimates by adjusting the coefficient of variation around reported 
removals (CV=0.0, 0.05, 0.10, 0.20) and running the model with the new estimates. Overall, 
assuming different levels of uncertainty around the reported removals had no impact on 
parameter estimates of abundance and trend. The model responded to changes in uncertainty 
by varying how much mortality it allocated to removals, ice and climate conditions and 
stochastic mortality. Since it is probable that there is some variation in the reported catches, a 
CV of 10% was adopted for model runs. 

 
Figure A4.1. Plot showing temporal variation in model-estimated harvest/bycatch removals for adults and 
YOY (juveniles), with observed data plotted for comparison (model estimates adjusted for struck and 
loss). Reported harvests assume either no uncertainty (CV=0%) (top-left), or an uncertainty of 5% (top 
right), 10% (bottom left) and 20% (bottom right) in reported numbers. Solid lines indicate mean estimated 
values and shaded bands indicate the associated 95% CI.  
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Figure A4.2. Plot showing relative contributions of various sources of mortality to the total combined 
mortality rate for YOY (juveniles). Mortality factors compared include removals from harvesting, poor ice 
conditions, climate effects, and baseline plus density-dependent mortality (including stochastic variation). 
The dashed line indicates what the expected value of baseline plus density-dependent mortality would be 
if stochastic variation were excluded. Partitioning of mortality assuming either no uncertainty (CV=0%; 
top-left), or an uncertainty of 5% (top right), 10% (bottom left) and 20% (bottom right) in reported 
numbers. 
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Figure A4.3 Plots showing stochastic variation over time in model-estimated juvenile survival rates: B) 
deviations from expected log hazard rates for young of the year (YOY); C) realized juvenile survival 
(including stochastic deviations). Solid lines indicate mean estimated values and shaded bands indicate 
the associated 95% CI, with an assumed uncertainty (CV) of 0% (top-left), 5% (top-right), 10% (bottom-
left) and 20% (bottom-right) in removals. 
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Appendix 5. Figure A5.1. Comparison of prior distributions (light grey shaded areas) to posterior distributions (ark grey shaded areas) for model 
parameters. 
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