Atlantic Climate Model

Climate change is expected to affect different parts of the world's ocean differently, as a result of regional atmospheric, ice and ocean features and other dynamics. The climate response of the North West Atlantic on the eastern coast of Canada is expected to be particularly complex in view of the competing influences of Arctic outflows, continental run-off, sea ice; the Labrador Current and Gulf Stream, and continental and subtropical air masses.

While Global Climate Models (GCMs) have become very useful tools for predicting the impacts of climate change over large geographic areas, they are unable to look at regional impacts in any detail. As a result, DFO researchers are developing regional models to address this knowledge gap.

The models are being used to describe, understand and simulate the ocean's response to recent and potential future climate variability and change. They are providing a basis for assessment of the impacts of climate change on the ocean's physical environment, ecosystem, fisheries and other important aspects in the region. They are supported by a high-resolution ice-ocean-plankton model for the region spanning the Gulf of St. Lawrence to the Gulf of Maine. Recent analysis of regional models indicate that the expected reduction in the mid-latitude occurrence of extreme winter storms by the mid 21st century may be greater and more widespread than Global Climate Models have previously predicted.

Due to improved methods for computing continental run-off into the ocean from precipitation, models will be able to provide an improved representation of future freshwater discharge into the coastal ocean. The discharge can have a major influence on estuaries, some bays, and the Gulf of the St. Lawrence by changing the salinity of the waters and the associated ecosystems. Such changes could potentially lead to the disappearance of marine species from localized areas.

Related Links:

DFO scientists working on Climate Models can be found here.

Atlantic Climate Model