Evolution of Physiological and Biochemical Traits in Fish

SYMPOSIUM PROCEEDINGS

Vera Val
Rick Gonzalez
Don M"{a}Kinlay

International Congress on the Biology of Fish
University of Aberdeen, Scotland July 23-27, 2000
Notice

This publication is made up of a combination of extended abstracts and full papers, submitted by the authors without peer review. The papers in this volume should not be cited as primary literature. The Physiology Section of the American Fisheries Society offers this compilation of papers in the interests of information exchange only, and makes no claim as to the validity of the conclusions or recommendations presented in the papers.

For copies of these Symposium Proceedings, or the other 30 Proceedings in the Congress series, contact:

Don MacKinlay, SEP DFO, 555 West Hastings St.,
Vancouver BC V6B 5G3 Canada
Phone: 604-666-3520  Fax 604-666-6894
E-mail: mackinlayd@pac.dfo-mpo.gc.ca

Website: www.fishbiologycongress.org
Fish are the most diverse group among living vertebrates and such diversity is probably the result of an enormous adaptive radiation occurred during its evolutionary history. The organization of different fish orders, families and genera was traditionally made by the studies of morphological and anatomical aspects during more than a century. The strength of such studies has been confirmed, with few exceptions, by molecular approaches at species levels (Avise, 1994). Molecular data have been effectively applied at all ecological levels, from populations to orders, being also very useful in investigations of zoogeographic distribution of populations, species and genera (Stepien and Kocher, 1997).

The reconstruction of phylogenies at any biological level requires different methodologies, which may vary according to the problem to be studied. Once fish fossil records are more complete, problems regarding differential rates of base substitution (differences in “molecular clocks”) in fish can be solved with rigorous studies of DNA sequences. Thus, comparisons of fish groups with different population sizes, or occupying different environments, or having different life histories (reviewed in Kocher and Stepien, 1997) may solve problems about differential evolutionary rates.

The use of molecular data is based on the assumption that much of molecular evolution is non-adaptive, i.e., neutral. On the other hand, morphological rely on characters subject to natural selection (i.e., adaptive characters). Although there have been some collision between the two scientific methods in the past, the future is pointing to a more synergistic approach in the study of fish systematic phylogenies. Thus, comparisons between molecular-based and morphological-based taxonomic hypothesis are a hope for our understanding about the evolutionary forces that gave origin to the great diversity of modern fishes.

The following articles in these proceedings were chosen to show that studies of physiological and biochemical processes, which are most certainly affected by natural selection, might also help us in the task of describing evolutionary history of fish groups. The readers and the symposium attendants will be able to recognize that the study of evolution in this group relies, necessarily, on discovering the main processes that allowed them to be well organized and adapted for life in a myriad of environmental conditions. Finally, we hope to remind in this section that adaptation remains as important as ever.
We take this opportunity to thank the participants of this symposium and the support they have had to produce the information presented here and attend the Congress.

Symposium organizers:

Vera Maria Fonseca de Almeida-Val  
Laboratory of Ecophysiology and Molecular Evolution  
INPA, Manaus Brasil

Rick Gonzalez  
Dept. of Biology  
University of San Diego  
San Diego, CA U.S.A.

Don MacKinlay  
Fisheries and Oceans Canada  
Vancouver, Canada

CONGRESS ACKNOWLEDGEMENTS

This Symposium is part of the International Congress on the Biology of Fishes, whose main sponsors were Fisheries and Oceans Canada (DFO), the University of Aberdeen, Scotland and the US Department of Agriculture. The main organizers of the Congress, on behalf of the Physiology Section of the American Fisheries Society, were Don MacKinlay of DFO (overall chair, program and proceedings), Jan Flint (registration and accommodations) and Dominic Houlihan, University of Aberdeen (local arrangements). Preparation of the Proceedings was accomplished with the editorial and word-processing assistance from Cammi MacKinlay and Karin Howard.

I would like to extend a sincere ‘thank you’ to the many contributors who took the time to prepare a written submission for these proceedings. Your efforts are very much appreciated.

Don MacKinlay  
Congress Chair
## TABLE OF CONTENTS

Evolutionary features of hypoxia tolerance in fish of the Amazon: from molecular to behavioral aspects Val, Vera ............................................................................................................. 1

Evolution of metabolism: combining phylogenetic, physiological and biochemical information to study metabolic adaption in killifish Pierce, Valerie ...................................................... 19

Mechanisms of adaptation to temperature in fish LDHs: from Antarctic ice to Mexican desert Fields, Peter and G. Somero .................................................................................................................. 31

Hypoxia tolerance in Amazon cichlids Chippari-Gomes, Adriana et al. .......................................................................................................................... 45

Tracking evolutionary trends in Siluriformes Rapp, L. ........................................ 57

Intestinal calcium regulation and the vitamin D3-system in teleosts Larsson, Dennis, et al. ......................................................................................... 73

Phylogenetic of electrorception and bioelectrogenesis in teleost fish: examples of convergent evolution Alves-Gomes, Jose .................................................................................................................. 77

Neotropical cichlids: adaptive radiation versus genetic conservation Formiga-Aquino, Kyara et al. ................................................................. 81

Circadian rhythms of amylase activity in three fish species of the Amazon Lopez-Vasquez, Katherine, et al. .............................................................. 85

Evolutionary implications and kinetic properties of vitamin C synthesizing enzyme (GLO) from lungfish Mesquita-Saad, Lenise, A.L. Val and V. Val ................................................. 91

Biochemical characteristics of liver and brain monoamine oxidase from Pacu Souza, Roberto H.S. et al. ................................................................. 99