Assessment of the Subsistence Harvest and Biology of Narwhal (Monodon monoceros L.) from Admiralty Inlet, Baffin Island, N.W.T., 1983 and 1986-89

M.M. Roberge and J.B. Dunn

Central and Arctic Region
Department of Fisheries and Oceans
Winnipeg, Manitoba R3T 2N6

October 1990

Canadian Technical Report of Fisheries and Aquatic Sciences No. 1747
Canadian Technical Report of
Fisheries and Aquatic Sciences

Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport technique canadien des sciences halieutiques et aquatiques

Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un public international et ils sont distribués à cet échelon. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les numéros 1 à 456 de cette série ont été publiés à titre de rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de rapports techniques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 925.

Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.
Canadian Technical Report of
Fisheries and Aquatic Sciences 1747

October 1990

ASSESSMENT OF THE SUBSISTENCE HARVEST AND BIOLOGY
OF NARWHAL (Monodon monoceros L.) FROM ADMIRALTY INLET,
BAFFIN ISLAND, N.W.T., 1983 AND 1986-89

by

M.M. Roberge\(^1\) and J.B. Dunn

Central and Arctic Region
Department of Fisheries and Oceans
Winnipeg, Manitoba R3T 2N6

This is the 27th Technical Report
from the Central and Arctic Region, Winnipeg

\(^1\)Department of Fisheries and Oceans, Newfoundland Region
St. John's, Newfoundland A1C 5X1
Correct citation for this publication is:

TABLE OF CONTENTS

ABSTRACT/RESUME .. v
INTRODUCTION ... 1
HISTORY OF THE HUNT 1
METHODS and MATERIALS 2
Hunting events ... 2
Struck loss rate .. 2
Kill:landed estimator 2
Biological sampling .. 3
Data analysis .. 3
RESULTS AND DISCUSSION 3
Hunting techniques ... 3
Floe edge .. 3
Ice crack ... 4
Open water ... 4
Hunt phases .. 4
Floe edge .. 4
Ice crack ... 4
Open water ... 4
Hunting events .. 5
Harvest ... 5
Landings ... 5
Sex ratio ... 6
Struck loss rates .. 6
Floe edge .. 7
Ice crack ... 7
Open water ... 7
Kill loss rates .. 7
Estimated total kill
Kill:landed estimators
Total kill ...
Biological sampling 8
Morphological measurements 8
Muktuk and blubber .. 9
Feeding .. 10
CONCLUSIONS ... 10
RECOMMENDATIONS 10
ACKNOWLEDGMENTS 11
REFERENCES ... 11

LIST OF FIGURES

Figure .. Page
1 Summering distribution of the three management stocks of narwhal 13
2 The Admiralty Inlet study area ... 14

Figure .. Page
3 Recorded landings of narwhal by Arctic Bay, 1958-89 15
4 Recorded and observed landings of male and female narwhal by Arctic Bay, 1986-89 16
5 Observed narwhal struck, landed and lost from the Arctic Bay narwhal hunts, 1983 and 1986-89 .. 17
6 Length frequency distributions of male and female narwhal landed by Arctic Bay, 1986-89 ... 18

LIST OF TABLES

Table .. Page
1 Information on the calibre of rifle and the type of ammunition used during the Arctic Bay narwhal hunt, 1983 and 1987-89 19
2 Information on the shots fired and firing ranges for all observed hunting events documented during the Arctic Bay narwhal hunt, 1983 and 1987-89 ... 20
3 Sex ratio of narwhal harvested in each hunt phase during the annual subsistence hunt in Arctic Bay, 1983-89 .. 21
4 Harvest analysis for each phase of the Arctic Bay narwhal hunt, 1983 and 1987-89 22
5 Estimated total kill, by hunt phase and year, for the Arctic Bay narwhal hunt, 1983 and 1986-89 .. 23
6 Observed landed catch composition in each phase of the Arctic Bay narwhal hunt, 1986-89 ... 24
7 Morphometric measurements, by sex, for adult narwhal sampled from the Arctic Bay narwhal hunt, 1986-89 ... 25
8 Relationship between morphometric measurements, by sex, of narwhal from the Arctic Bay narwhal hunt, 1986-89 ... 26
9 Comparison of morphometric measurements,
LIST OF TABLES cont'd

10 Occurrence of various food items in narwhal stomachs, Arctic Bay, 1987 28

LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data sheet used for the collection of narwhal hunt event data . . . 29</td>
</tr>
<tr>
<td>2</td>
<td>Data sheet used for the collection of narwhal biological data . . . 30</td>
</tr>
<tr>
<td>3</td>
<td>Morphometric measurements for subadult male narwhal sampled from the Arctic Bay narwhal hunt, 1986-89 31</td>
</tr>
<tr>
<td>4</td>
<td>Morphometric measurements for narwhal from the Arctic Bay narwhal hunt, 1983 32</td>
</tr>
</tbody>
</table>
ABSTRACT

In 1983 and 1986-89, the Department of Fisheries and Oceans conducted a survey program of the Arctic Bay subsistence narwhal hunt in Admiralty Inlet, Northwest Territories. Historic reports indicate that harvests of narwhal have fluctuated since 1958. Narwhal were harvested from the end of May to October depending on ice and weather conditions. The annual hunt was divided into three phases: floe edge, ice crack and open water. Over 80% of the harvest occurred during the ice phases. Hunting techniques varied between phases. Male narwhal composed most of the landed catch. Annual harvest statistics underestimated the total numbers of narwhal killed due primarily to the non-reporting of struck and killed but lost whales. Loss rates varied between hunt phases: 32% for the floe edge, 24% for the ice crack and 7% for the open water; all were lower than that reported in a previous study in Pond Inlet. The estimated total kill of narwhal exceeded the reported landed catch by 40%.

Mean morphometric measurements of narwhal sampled from the landed catch differed between the sexes and between narwhal landed in Arctic Bay and Pond Inlet. Fifteen percent of the females examined had tusks. There was no difference in the blubber thickness over the summer season. Narwhal fed primarily on Arctic cod and squid.

Key words: Arctic Bay; feeding; harvest statistics; hunting techniques; marine mammals; Monodontidae; morphometrics.
INTRODUCTION

The Department of Fisheries and Oceans (DFO) has identified three summering narwhal (Monodon monoceros) management stocks: northwest Greenland, northeastern Hudson Bay and the Canadian High Arctic (Strong 1988) (Fig. 1). The Canadian High Arctic stock summers in the inshore waters of northern Baffin Island, Northwest Territories (N.W.T.) including the waters of Eclipse Sound, Admiralty Inlet, Prince Regent Inlet and Peel Sound.

Narwhal are endemic to the Arctic and are seldom seen south of 65 N (Strong 1988) (Fig. 1). During the winter, narwhal are found in the open waters in Baffin Bay and Davis Strait in close association with pack ice (Davis et al. 1979; Kapel 1977; Mansfield et al. 1975a,b; McLaren and Davis 1981). In spring, they migrate northward as the ice recedes along the west coast of Greenland and then in June and July westward to Lancaster Sound, Jones Sound and Pond Inlet (Greendale and Brousseau-Greendale 1976; Johnson 1976). As the ice breaks up narwhal move from Lancaster Sound into Eclipse Sound, Navy Board Inlet and Admiralty Inlet (Davis et al. 1979). In the fall, as the waters of the Arctic Archipelago freeze, they migrate east and south along with the movement of the sea ice (Davis et al. 1978; Finley and Johnson 1977).

The management of narwhal is administered under the authority of the Fisheries Act and the Narwhal Protection Regulations. The Narwhal Protection Regulations were introduced in 1971 restricting Inuit to five landed narwhal per hunter per year. In 1977, after consulting with each settlement with a recorded historical use of narwhal, DFO established an annual community quota, based on local needs and limited biological information (Finley et al. 1980; Weaver and Walker 1988). As well, female narwhal with calves are protected and wastage of meat is discouraged. The quota is controlled through a tag system which specifies the number of narwhal that can be landed. It was designed to protect the narwhal populations in the N.W.T. and to ensure the continued availability of the resource to Inuit. Initially the N.W.T. narwhal quota was 402. In 1978, the quota increased to 472 narwhal and with subsequent increases it currently stands at 525 whales.

The quota system was designed to record only narwhal landed and did not consider those whales struck and killed but not landed (lost). This has resulted in an underestimation of the annual removals from the population. Information on struck and lost rates are scarce and available only for the Pond Inlet narwhal hunt (Finley and Miller 1982; Finley et al. 1980; Weaver and Walker 1988). The largest community quota (100 narwhal) is issued only to the communities of Pond Inlet and Arctic Bay. The Arctic Bay Hunters and Trappers Association (Ikajutit HTA) usually determine the number of narwhal to be taken during each hunt phase before the annual hunt begins; the usual ratio being 70 from the floe edge/ice crack phases and 30 from the open water phase.

Arctic Bay residents harvest narwhal from the Admiralty Inlet and Lancaster Sound areas (Fig. 2). Information on narwhal utilizing Admiralty Inlet is sparse. Hay (1984) documented the life history and basic biology of narwhal frequenting the coastal waters of northern Baffin Island. Biological data collected from 25 narwhal landed during the 1975 open water hunt is discussed by Hay (1984) and Hay and Sergeant (1976). Catch statistics for the community of Arctic Bay appear in Bissett (1968), Degerbol and Freuchen (1935), Hay (1984), Kemper (1980), Mansfield et al. (1975b), Mitchell (1982), Mitchell and Reeves (1981), Reeves (1977b) and Strong (1989). Description of the hunting techniques for the open water phase of the hunt is provided by Hay and Sergeant (1976), Kemper (1980) and Reeves (1977a,b).

In 1986, DFO initiated a program in Arctic Bay to document current hunting techniques, determine struck and loss rates and collect biological data on the exploited segment of the narwhal population. In this report we summarize our observations of the 1986-89 hunts as well as data collected by DFO from the 1983 hunt and use this information to estimate total annual kill. Morphometric data are used to compare narwhal harvested in the Admiralty Inlet and Pond Inlet areas.

HISTORY OF THE HUNT

Arctic Bay is a community of approximately 500 residents, located along the north shore of Adams Sound in Admiralty Inlet (Fig. 2). Prior to the establishment of the community in the mid 1960's, Inuit traditionally lived throughout the Admiralty Inlet region and came to Arctic Bay area seasonally to hunt narwhal for food and clothing. Inuit used narwhal meat to feed their dog teams (Kemper 1980; Reeves 1976; Reeves 1977a; Reeves and Mitchell 1981). Blubber was used to fuel lamps and cooking fires (Reeves 1977a; Reeves and Mitchell 1981). Muktuk (or narwhal skin), high in Vitamin A, was and still is an important food item. Historically the muktuk was occasionally dried and used as leather thongs and dog traces (Reeves 1977a). Narwhal sinews served as thread for sewing garments and binding leather implements (Reeves and Mitchell 1981). The ivory from the tusks was used for making harpoon tips, lances and sometimes carvings (Reeves 1977a). Today most traditional uses of narwhal
products have declined, particularly that of meat since skidoos are steadily replacing sled dogs for transportation (Bissett 1968). Limited amounts of meat and muktuk may be utilized through intersettlement trade. Some narwhal meat may be cached for use as fox bait during the winter (Finley and Miller 1982; Kemper 1980; Reeves 1977a; Reeves and Mitchell 1981). Tusk ivory is now used primarily for commercial sale and to a lesser extent for carving. Hay and Sergeant (1976), Kemper (1980) and Reeves and Mitchell (1981) state that the increased landed catch of narwhal in the recent past is due to the increased dollar value of the tusk.

Historical records of the subsistence narwhal harvest in the Admiralty Inlet region are scarce. In 1873, Captain William Adams, a Scottish whaler, left Adams Sound with 27 narwhal harvested from the Admiralty Inlet-Lancaster Sound area (MAR 1987). In the early 1900's, trading posts were set up in the Pond Inlet area (Mitchell and Reeves 1981) and Inuit from the Admiralty Inlet area went there to trade. Degerbol and Freuchen (1935) reported that a "savssat" (an ice entrapment of cetaceans) occurred in southern Admiralty Inlet near Moffet Island in 1924, from which at least 400 narwhal were landed. In 1926 the Hudson Bay Company built a trading post in Adams Sound, Admiralty Inlet and reported a harvest of 27 narwhal (Mitchell and Reeves 1981). The post was closed in 1927 when the Arctic Islands Game Preserve was set up to protect the declining musk-ox population; although the Adams Sound post was reopened in 1936 with the resurgence of the musk-ox population, no published records of the trade in narwhal products are available. The harvest of narwhal in the Arctic Bay area from 1955-1989 is depicted in Fig. 3.

METHODS AND MATERIALS

DFO staff monitored the Arctic Bay narwhal hunt in 1986 and 1987 with the assistance of local guides (and known narwhal hunters) from the community. In 1988, the monitoring program was modified to hire and train local narwhal hunters as monitors to collect data for DFO. DFO staff conducted training sessions to instruct the monitors in the collection of both hunting event information (Appendix 1) and biological sampling data (Appendix 2).

The hunt was divided into three phases based on sea ice conditions, (which in turn varies the time and success of the hunt): floe edge, ice crack and open water as described by Finley et al. (1980), Finley and Miller (1982), Kemper (1980) and Weaver and Walker (1988).

Data were obtained from the 1977-1989 landed catch from tag records provided by the Ikajutit HTA. The HTA identified the date of each kill and usually the sex of the narwhal. The kill dates were used to estimate the numbers of narwhal landed in each hunt phase. Hunt phases were arbitrarily separated by locating significant gaps between kill dates and examining yearly ice conditions. This information along with the sex data was used to estimate the sex composition of the harvest in each hunt phase.

HUNTING EVENTS

The term "hunting event" used in documenting the harvest represents the action of taking aim at target narwhal by one or more hunters (Weaver and Walker 1988). Hunting events were either directly observed by DFO staff, recorded through DFO hunter interviews or recorded by a monitor (directly or indirectly). Information collected by hunt phase included the location and timing of hunting events, the range from which shots were fired, the number of shots and calibre of rifle used as well as the number of narwhal shot at.

Narwhal struck in each event were either recorded as landed, wounded or sunk. Wounded narwhal were identified as either superficially wounded or mortally wounded after direct observation and discussion with the hunter. Classification follows that described by Weaver and Walker (1988) for the "critical (lethal) window", firing distances and angle of fire, all used in determining the wound type.

Struck loss rate

Struck loss rates, or the number of narwhal struck and killed but not landed, were estimated by the ratio of the combined numbers of narwhal mortally wounded and sunk to the total numbers of narwhal struck.

Kill:landed estimator

Kill:landed estimators were estimated by the ratio of the number of narwhal killed including the number landed, mortally wounded and sunk to the number of narwhal landed. Estimators were calculated to incorporate the struck loss rates into estimates of total narwhal removals; the total annual number of narwhal landed was multiplied by the estimator to provide a corrected total of annual removals. The jackknife procedure (Efron and Gong 1983), described by Weaver and Walker (1988), was used to estimate a corrected kill:landed estimator which would reduce the statistical bias associated with the original estimator. Since observations were not available for all years or all hunt phases, estimators were pooled by hunt phase.
BIOLOGICAL SAMPLING

Each sampled narwhal was assigned a unique catalogue number, sexed and measured. Morphological measurements including total body length (straight length), fluke width, girth (axillary and umbilical), flipper length (anterior and axilla), flipper width, exposed tusk and total tusk lengths and basal tusk circumference were recorded to the nearest centimeter (Appendix 3). Muktuk and blubber thicknesses were measured to the nearest millimeter along the axillary and umbilical circumferences at the mid-dorsal, lateral, and ventral positions (Appendix 3).

Tissue samples were collected opportunistically in 1986 and 1987 for future analysis by DFO scientists. Samples were obtained from the liver, spleen, kidney, heart, muscle, muktuk and blubber for contaminant and genetic analyses.

In 1986 stomachs of the sampled narwhal were removed, frozen and later examined in the laboratory. In 1987 a qualitative analysis of narwhal stomach contents were conducted in the field. Food items were coarsely identified as squid, fish or invertebrates.

DATA ANALYSIS

Data analysis were performed on a micro Vax II computer using the Statistical Analysis System (1985) package. Statistical tests used to analyze both the hunt event data and the biological data included chi-square to test for differences in frequency distributions, T-test and analysis of variance to test for significant differences in means and linear regression to test for correlations. The critical level for all tests was set at 0.05.

RESULTS AND DISCUSSION

HUNTING TECHNIQUES

The hunting techniques observed during the floe edge and ice crack phases are essentially the same. Basic equipment used by hunters consisted of a high powered rifle, hard point ammunition, a grappling hook and harpoon for retrieving and securing the narwhal and a block and tackle or 'come-a-long' to haul the whale out of the water.

Hunters positioned themselves along the ice edge, initially standing back from the edge so their shadows did not alert narwhal swimming below. When narwhal approached, the hunters moved towards the ice edge and waited for a 'good shot'. A good shot required that a narwhal:

- be within retrieval range (5-10 m), and
- present a 'good target' i.e. maximal exposure of the lethal window (area bounded by the eye and a point 40 cm behind the flipper), as determined by their swimming behavior. Narwhals surface at regular intervals to breath and expose only a small portion of the head and blowhole area. However prior to deep diving narwhals raise their backs high out of the water and present a larger portion of the lethal window. A successful shot in this area was likely to result in the breaking of the spine or to lodge a bullet near the base of the skull (Weaver and Walker 1988). If the shot missed the pleural cavity it was expected that the whale would float since its lungs were likely full of air.

Shots were usually fired from the standing position but sometimes from a kneeling position; the latter steadies the rifle but decreases the angle of incidence of the shot thereby decreasing its lethality. Non-lethal shots usually resulted from:

- a) missing the whale entirely,
- b) the bullet hitting the water and deflecting the shot off-target and/or reducing its penetrating power, or
- c) missing the lethal window area.

Killed narwhals were observed to be retrieved using a sharpened 3- or 4-pronged grappling hook thrown out and over the animal and pulled back to snag it. The whale was pulled to the ice edge, secured with a harpoon and a hole then cut in the forehead just above the premaxilla so a heavy rope could be tied to the carcass. A 'come-a-long' or block and tackle was anchored to the ice and attached to the rope to pull the whale onto the ice. The carcass was flesned of the muktuk, and it's tusk (if present) and other body parts removed and packed on to the komatik for transportation. S. Akeeagok (DFO, Iqaluit, personal communication) has observed narwhal carcasses being secured with a rope around the caudal peduncle and then pulled out; this method was not observed by the authors.

Floe edge

Techniques specific to the floe edge hunt varied with ice conditions. If the floe edge was free of pack ice, whales were difficult to kill for two reasons. First, hunters were unable to gain an elevated vantage point to decrease the angle of incidence of the shot and second, whales did not usually swim close to the ice edge. Consequently, shots were fired from greater distances and had a lower angle of incidence, which increased the probability of
wounding. Retrieval of whales was also difficult and usually required a boat. Without a boat hunters relied on grappling hooks and since carcasses were often out of range, this resulted in more sunk and lost whales.

It was observed that if the floe edge was ice packed, hunters searched the pack ice for accessible open pockets of water close to the floe edge where they waited for narwhal to appear. Usually hunters were able to find elevated pieces of ice allowing a good shot by increasing the angle of incidence. No observations were made on narwhal landed this way but hunters indicated that when they did land a whale it was quickly flesned on the pack ice. A komatik was then pulled by hand to and from the flesning site to retrieve the muktuk and tusk.

Ice crack

The ice crack hunt usually occurred when the floe edge became too dangerous to travel (i.e. thin rotten ice) or there was a danger of the floe edge ice pan separating from the more land fast ice. Hunters usually positioned themselves along the ice cracks when narwhal moved through. The cracks were normally 10–20 m wide but we observed narwhal in cracks as narrow as 3 m wide. Retrieval of narwhal was not difficult since the whales were usually within range of the grappling hook. Hunters would not shoot at all narwhal, but rather waited for a 'good shot' since crack hunting allowed them to be more selective. Resting narwhal were not usually shot at because they did not present the 'lethal window' and it was often difficult to determine whether or not they had tusks (S. Ageeagok, DFO, Igloolik, personal communication). As well since their lungs may not be completely full of air there was an increased probability that the narwhal would sink when killed.

During observations of the floe edge/ice crack hunts certain activities were noted that concereed the authors. One such activity was that at times hunters were not prepared to retrieve a whale and did not have a hook or harpoon ready (i.e. a hook or harpoon not present or if present the rope would be tangled). It was also noted that if a large number of narwhal appeared the hunter(s) would not always take proper aim or wait for a good shot which resulted in wounded or sunk whales.

Open water

Open water hunting techniques observed in 1983 did not differ from those described for the Pond Inlet open water hunt (Weaver and Walker 1988). Boats were often used cooperatively to drive whales into shallow water; a practice which was believed to reduce hunting losses. Arctic Bay hunters would fire into the water a few times to scare the whales inshore if necessary, but mostly hunters depended upon the noise of the outboard motor to herd the whales towards shore (Reeves 1977b).

In 1983, single hunting parties were often observed by DFO staff to pull up on drifting ice pans to wait for passing narwhal. If killed in the shallow waters, hunters either used a grappling hook to snag the whale and tow it to shore or depended upon the tide to wash the carcass ashore (Reeves 1977b). Narwhal, if killed in deeper water, were harpooned and a buoyant float attached. Losses due to sinking were prevalent in the deeper waters.

HUNT PHASES

Floe edge

In 1983 the floe edge hunt occurred from 21 May to 17 June. The hunt was not monitored and no whales were sampled. In 1986, the hunt located at the northern edge of Admiralty Inlet commenced the week of 25 May (Fig. 2). DFO staff monitored the hunt from 14–25 June during which time no narwhal were landed. Toward the latter part of June, whales were sighted in cracks by the floe edge but ice conditions during this period precluded a successful hunt. No narwhal were landed in this phase of the 1987 annual hunt because the floe edge was remotely located near Navy Board Inlet. Because of the distance from Arctic Bay few hunters attempted the trip. Travel to Navy Board was hazardous due to the rough ice conditions, particularly in areas where Admiralty Inlet and Lancaster Sound met. In 1988 hunting occurred within the northern end of Admiralty Inlet. Monitors surveyed the hunt from 30 June to 5 July but no narwhal were sampled. Information was collected from 7 hunting events (Table 2). In 1989 the floe edge hunt was conducted from 21 June to 11 July at the northern end of Admiralty Inlet; monitors surveyed the hunt from 22 June to 11 July. Information was collected from 21 hunting events (Table 2).

Ice crack

In 1983 the ice crack hunt occurred from 5 July to 25 July. The hunt was not monitored and no whales were sampled. In 1986 the hunt took place in the northern portion of Admiralty Inlet between Elwin Inlet and Ship Point during the first half of July (Fig. 2). The major portion of this hunt occurred between 6–10 July when 76 narwhal were landed. DFO staff monitored the hunt during this same interval. No hunting event data were collected owing to continually changing locations and unstable ice conditions resulting in high mobility of hunters. It was often by chance that a hunter, who had just landed a narwhal, was encountered. Often the whale had already been flesned which precluded
the collection of morphometric measurements. In 1987 the ice crack hunt occurred from 29 June to 18 July at the northern end of Admiralty Inlet and along the southern shore of Lancaster Sound. DFO staff monitored the hunt from 5-17 July. Fewer than normal numbers of narwhal were harvested due to poor ice and weather conditions, however information was collected from 24 hunting events (Table 2). In 1988 the hunt occurred from 23 June to 9 July at the northern end of Admiralty Inlet. Monitors surveyed the hunt during this interval and information was collected from 24 hunting events (Table 2). In 1989 the hunt occurred from 23 June to 13 July at the northern end of Admiralty Inlet. Monitors surveyed the hunt during this same interval and information was collected from 49 hunting events (Table 2).

Open water

This hunt phase was dependent on weather and freeze-up conditions and the number of remaining tags. This phase was not observed by the authors; however in 1983 observations made by DFO staff indicated this phase was conducted from either the community or from land based camps along the western side of Admiralty Inlet (Fig. 2). Reeves (1977b) identified base camps at Naqsukuluk, Ako and Kakiak.

In 1983 the open water hunt occurred from 6 August to 15 September. DFO staff monitored the hunt from 6-20 August and information was collected from nine hunting events, seven of which were observed by DFO staff (Table 2). In 1986 the open water phase occurred from 2 August to 20 September. This hunt was not monitored and no narwhal were sampled. In 1987 the hunt occurred from 29 July to 31 August. The high winds encountered on the west coast of Admiralty Inlet (the major open water hunting area) during August made hunting very difficult. Since breakup of the ice was very slow due to the cool weather in August, as well as the late movement out of the area of the broken ice, hunters had moved into southern Admiralty Inlet to commence caribou hunting and Arctic char fishing (O. Kalluk, Arctic Bay, personal communication). These factors combined to make for a poor open water hunt in 1987. The hunt was not monitored and no narwhal were sampled. In 1988 the hunt occurred from 15 July to 6 October. Monitors surveyed the hunt from 22 July to 6 October and information was collected from 19 hunting events (Table 2). In 1989 the hunt occurred within Admiralty Inlet from 2-21 August. The hunt was not monitored and no narwhal were sampled.

HUNTING EVENTS

Narwhal were observed struck from mean firing distances ranging from 3.3 m to 22.9 m (Table 2). Finley and Miller (1982) suggested that narwhal were usually mortally wounded if the firing distance was <20 m and superficially wounded if firing distance was >20 m. Weaver and Walker (1988) determined the crucial firing distance to be 25 m. We noted during both the floe edge and ice crack hunts that if the firing distance was less than 25 m and if the angle of firing was low and the whale was not directly in front of the hunter it resulted in superficial wounding of the narwhal.

Reeves (1977b) reported that Arctic Bay hunters use only the .303 rifle. Our results support this observation; 63% of hunters used .303 calibre, 12% used the .375 calibre and 11% used a 6.5 calibre (Table 1). Finley and Miller (1982) reported that the .303 was most commonly used by Pond Inlet hunters; Kemper (1980) found that the .303 and the .30-06 were used during the floe edge hunt in Pond Inlet. Hard point ammunition is the most commonly used ammunition (87%) by Arctic Bay hunters however the less effective soft point ammunition is still being used (13%) (Table 1). Use of soft point ammunition usually results in the superficial wounding of a narwhal likely resulting from reduced penetration.

HARVEST

Landings

Kemper (1980) found that the early harvest of narwhal from the N.W.T. was not well documented. Little information is available for the historic subsistence harvest of narwhal from the Admiralty Inlet area (Fig. 3). Strong (1989) reports recorded landings of narwhal from 1958 to 1987 but states that these statistics are not necessarily the actual harvests and do not include corrections for lost or unreported harvests. The reported average annual harvest from 1955-1958 was 45 narwhal; there is no information on landings from 1959 to 1972 which likely reflects a lack of records rather than a lack of narwhal. Kemper (1980) reported fluctuating harvest statistics for narwhal landed in Pond Inlet during the period 1956-78 and believed similar trends occurred in Arctic Bay, Average annual harvest from 1973 to 1976 as reported in Strong (1989) was calculated to be 109 narwhal. There is a discrepancy in the reported harvest statistics for 1973 and 1974: Mansfield et al. (1975b) reported 150 narwhal landed in 1973 while Strong (1989) reported 101 whales landed and Reeves (1977b) reported at least 200 landed in 1974 while Strong (1989) reported 52 narwhal landed. Using the larger numbers, the average harvest between 1973 and 1976 increases to 158 whales. Hay and Sergeant (1976), Kemper (1980) and Mansfield et al. (1975b) believed the increase in the landed recordings in the 1970's was probably due to the increase in the value of the price of the tusk ivory. However, since 1977, the average
recorded annual landing has decreased to 79
narwhal. Even with the increase in the price of
ivory and the intent to increase the landings of
narwhal from historic harvest levels, hunters
are often restricted not by law but by ice and
weather conditions.

Bissett (1968) believed that fluctuations
in the number of narwhal landed were due to the
annual variations in ice conditions, timing of
ice breakup and movement of the narwhal herds.
Harvest in the early part of the season was
influenced by the conditions of the ice, while
hunting in the latter part of the season was
influenced by the amount of open water and wind
conditions, as well as the number of days
available for open water hunting. Finley and
Miller (1982) also found ice conditions strongly
effected the timing and duration as well as the
success of the hunt. Meanwhile Reeves (1977b)
observed that in 1974 >100 tusks were taken
during the ice edge hunt in Admiralty Inlet
while in 1977, due to poor ice conditions, only
10 tusks were taken before the ice broke.
During 1987, the Arctic Bay narwhal hunt was
very poor due to poor ice and weather conditions
(D. Kaliuk, Arctic Bay, personal communication).
The late breakup greatly reduced the harvest and
only 18% of the previous four year average for
ice crack harvests was taken. Therefore it is
believed that fluctuations in the narwhal harvest
from the Admiralty Inlet area were probably
related to changing ice and weather conditions.

Sex ratio

The sex ratio of narwhal harvested from
1979 to 1989 by Arctic Bay hunters fluctuated
annually (Fig. 3); however for most years males
predominated (>75%). Sergeant (1982) attributed
the variation in the sex ratio of landed narwhal
to hunter discrimination. Finley and Miller
(1982) believed that the annual variation in the
sex ratio of the landed catch in Pond Inlet was
due to hunter discrimination, seasonal emphasis
(i.e. muktuk vs ivory) and the success of other
hunt phases.

The proportion of landed males:females
reported by the Arctic Bay HTA for 1986-89 were
similar to that observed during our study (Fig.
4). Males composed an average 80% of the annual
harvest for the years 1986-87 and 1989 but a
significant decrease (59%) occurred in 1988. The
observed data shows a similar trend. The 1988
decrease is believed due to hunter discrimination;
the Arctic Bay Co-op processed muktuk for
sale to local residents and consequently hunters
were paid for their muktuk and thus were less
selective towards tusked narwhal (i.e. males).

The sex ratio of landed narwhal from
Arctic Bay varies among years for the same type
of hunt (Table 3) which is similar to that found
by Finley et al. (1980) for narwhal harvested
from Pond Inlet. This is due primarily to
hunter selectivity and seasonal emphasis.

Floe edge: The sex ratio of narwhal taken at
the floe edge from 1983-89 by hunters from
Arctic Bay varies (Table 3) and is likely due to
hunter selectivity. The 1988 decrease is
believed due to hunter discrimination resulting
from the Co-op muktuk processing initiative.

Ice crack: The ice crack hunt in Admiralty
Inlet from 1983-89 (excluding 1988) consisted
primarily of male narwhal (Table 3) similar to
that found by Reeves (1977b). Finley and Miller
(1982) found that large males tend to move
through the ice cracks before females. At this
time the whales are vulnerable to the hunter and
males with large tusks are easy to select.
Females are usually taken at this time either by
mistake when firing at a male or for their skin.
Finley and Miller (1982) suggested that the high
percentage of female narwhal in the ice edge
hunt from Pond Inlet was due to females and
their calves straying close to the ice edge
providing good targets and the hunter's
requirements for muktuk being of higher priority
at this time. In 1988 the predominately male
catch from both the floe edge and ice crack
hunts shifted towards females due to hunter
selectivity resulting from the Co-op muktuk
processing initiative.

Open water: From 1983-89 (excluding 1987)
the sex ratio of the open water narwhal harvest
was approximately 1:1. This may be due to the
presence of females and their calves providing
good targets or to the hunter's requirements
for muktuk being of higher priority at this
time.

STRUCK LOSS RATES

Catch statistics underestimate the number
of narwhal killed due to the non-reporting of
narwhal struck and killed but lost (not
retrieved) (Finley and Miller 1982; Hay 1984;
Kemper 1980; Mansfield et al. 1975b; Reeves
1977b; Sergeant 1982; Weaver and Walker 1988).
Consideration must be given to the type of hunt
phase, the ice and weather conditions and, in
particular, to the subjectivity involved in
classifying a whale as superficially or mortally
wounded. The latter requires an interpretive
decision on the part of the observer and in some
instances may be difficult. Our study followed
the classification criteria described by Weaver
and Walker (1988) for superficial and mortal
wounds.

Floe edge

The loss rates for the floe edge hunts in
1988 and 1989 varied from 40% to 24%
respective
dy and averaged 32% (Table 4). No estimate is
available for the 1987 floe edge hunt since no
hunt occurred due to poor ice conditions. The
high loss rate in 1988 was due to the high
proportion of narwhal sinking; an estimated 50%
of all narwhal considered killed were not
retrieved and hunt monitors provided no reasons
for this. Our data show that 75% of these
narwhal were shot within 3.2 m and therefore
could have been secured before sinking. Poor ice
conditions may have prevented the hunters from
getting a boat in sufficient time to retrieve a
dead whale. In comparison the loss rates for
Pond Inlet floe edge hunt ranged from 56% (1982)
to 27% (1983) (Weaver and Walker 1988); the
reduction in loss rates between the two years was
believed due to a local hunter initiative in
reducing loss rates.

Ice crack

The average loss rate for the ice crack
hunts from 1987-89 was 24% ranging from 19-32%
(Table 4). The high loss rate (32%) in 1988 is
due to the high portion of whales mortally
wounded and sunk (17/25); monitors provided no
reason for the increase. In comparison the Pond
Inlet ice crack loss rates ranged from 10% to
100% (1983 and 1982, respectively) (Weaver and
Walker 1988).

The proportion of narwhal sunk during the
ice crack hunt is considerably lower (7/17) than
that at the floe edge hunt (7/8). This is
likely due to easier retrievability of whales at
the ice crack compared to the floe edge and not
necessarily to inefficiency of the hunters.

Open water

The open water hunt appears to be the most
efficient hunt phase, with an average loss rate
of 7% (1983 and 1988) (Table 4). This low rate
is likely due to the hunting technique used
during the open water harvest. There were no
whales sunk and lost in either the 1983 or 1988
open water hunts. In comparison the Pond Inlet
open water hunt loss rate in 1982 was estimated
to be 42% (Weaver and Walker 1988).

Kill loss rates

Past studies in the Pond Inlet area
expressed loss rates in terms of total number
killed (i.e. the ratio of the number of narwhals
mortally wounded and sunk to the total number of
narwhals killed) and not in terms of total
number struck (Finley et al. 1980; Finley and
Miller 1982); this expression did not take into
consideration those whales struck but superfi-
cially wounded and resulted in a higher estimate
of loss rate. To compare with these earlier
studies we estimated loss rates based on number
killed. The average loss rate during the Arctic
Bay floe edge hunt was 37% which was lower than
the 69% for the Pond Inlet floe edge hunt
reported by Finley et al. (1980). Loss rate for
the Arctic Bay open water hunt averaged 11%
while Finley et al. (1980) estimated a 25% loss
rate during the 1978 Pond Inlet open water
hunt. Hay and Sergeant (1976) determined a 15%
loss rate in 1975 while Kemper (1980) estimated
a 20% loss rate for the Pond Inlet open water
hunt. Loss rates for the open water hunt
conducted in Creswell Bay was estimated to be
17-23% (Finley et al. 1980).

ESTIMATED TOTAL KILL

Kill: landed estimators

The narwhal harvest is regulated by a
quota and only reports whales actually landed.
A proportion of all narwhal struck are in fact
killed as a result of sinking loss or mortal
wounding (Fig. 5). Weaver and Walker (1988)
state that the kill:landed estimator depends on
knowledge of the outcome of hunting events in
which whales are struck, and especially on
observations of whales struck and landed in each
hunt phase. A separate estimator for each hunt
phase must be calculated since the accessibility
and retrieval possibilities vary between hunt
phases.

The struck and loss rates from Arctic Bay
indicate that more narwhal are killed but lost
during the floe edge hunt (32%) than from the
open water hunt (7%) (Table 4). Sergeant (1982)
stated that each hunt phase varies annually in
extent and between major hunting settlements.
Because of this variability, data must be
collected over a number of years and hunt phases
and the basic requirement of estimating total
removals should be that individual estimates
are used for each type of hunt.

Floe edge: The pooled (1988-89) estimator
corrected) for the floe edge hunt was 1.56;
anual estimators ranged from 2.08 in 1988 to
1.29 in 1989 (Table 5). In comparison the
average kill:landed estimator for the Pond Inlet
floe edge hunt was 1.45 (Weaver and Walker
1988). Because of the variation in estimators
between years, additional data must be collected
from the floe edge hunt so that a more realistic
and accurate trend in estimators can be
determined.

Ice crack: The pooled (1987-89) estimator
for the ice crack phase of the annual hunt was
1.41 (Table 5). Weaver and Walker (1988)
calculated a similar ice crack estimator for
Pond Inlet (1.48). Estimators were similar in
1987 and 1988 (1.50 and 1.56, respectively) but
decreased to 1.26 in 1989. It is reasonable to
use the average of 1.41 in estimating total kill
estimate for the ice crack hunt however addi-
tional data must be collected to increase the
precision of the mean.
Open water: The open water hunt estimator for 1988 was 1.07, and we have no data from this study with which to calculate another (Table 5). The estimator calculated for the 1983 Arctic Bay open water hunt was slightly higher at 1.18. The pooled estimator of 1.11 is probably realistic, however additional data must be collected to improve on the estimate. The estimator for the Pond Inlet open water hunt (1.93) is almost double that found in Arctic Bay.

Total Kill

Using the pooled kill:landed estimators, the estimated total number of narwhal killed was 39% (n=139) greater in 1986 than that reported landed, 35% (n=36) in 1987, 52% (n=131) in 1988 and 25% (n=125) in 1989 (Table 5). Pooled estimators for the floe edge and ice crack hunts from the 1987-89 hunts used in the 1983 data resulted in an estimated 38% (n=138) more narwhal killed than reported landed.

When between year data are pooled, an average 30% more narwhal are killed than reported landed. This is lower than that reported by Davis et al. (1980) and Mansfield et al. (1975b) who believed that an additional 50% of narwhal reported landed were killed but lost. Mansfield et al. (1975b) believed that the high loss rate was due to shooting the whale before harpooning.

The quote for landed narwhal is controlled through the issuance of tags. These tags were designed to easily attach to the tusk of the narwhal. Finley and Miller (1982) and Weaver and Walker (1988) believe that a tag system does not ensure that all female narwhal are reported since most female narwhal do not have tusks; in our study only 5% of tusked whales were females. Sergeant (1982) stated that the catch statistics under-report the actual catches because tuskless females are not reported in some communities in some years. Kemper (1980) stated that female narwhal are not always tagged and therefore not reported resulting in an underestimate of annual harvest. He felt that the only real advantage of the tag system was in monitoring the sale of tusks. A sold tusk must have a tag to authenticate the tusk and to validate the sale. In the past there may have been lapses in reporting the number of females actually landed but we believe the reported harvest from Arctic Bay during the study period 1986-89 is accurate due to the strict monitoring of the hunt by the HTA.

The percentage of females reported landed has fluctuated over the years. Finley and Miller (1982) believed this variability is due to the discrimination of the hunters, their seasonal requirements and success of the various phases of the hunt. Unfortunately even if the number of females killed is known there is still an additional fraction of the population which is lost as a result of these kills. Finley and Miller (1982) estimated that at least 39% of female narwhal observed landed in 1979 were pregnant and Hay (1984) estimated 38% of all females landed were pregnant. Weaver and Walker (1988) found that 44% of female narwhal examined from the Pond Inlet hunt in 1982-83 were either carrying full term foetuses (25%) or were newly pregnant (19%). An additional three females were not pregnant but lactating and the accompanying calf probably starved to death (Hay 1984; Finley and Miller 1982). These data appear to indicate that approximately 40% of all females landed will either be pregnant or have a calf in attendance thus making the estimate of narwhal killed annually even higher. Reproductive data were not available during our study but we believe that additional narwhal (calves and unborn narwhal) were likely lost to the population. Therefore the estimated total kill of narwhal from Arctic Bay are higher than reported in Table 6. Using the average estimate of 40% females affected to estimate additional kills, the revised estimates of total kills for Arctic Bay are 141 in 1983, 149 in 1986, 40 in 1987, 145 in 1988 and 134 in 1989.

BIOLOGICAL SAMPLING

Morphological measurements

All females sampled were adult, however 5% males examined were determined to be subadults (Table 6); three of which had tusks. Finley and Miller (1982) believed that the presence of immature males in the landed catch may reflect the tendency of hunters to select animals with tusks even if the whale is small sized. This practice should be avoided if at all possible to ensure that the pre-recruits make it into the fishery.

There was no significant differences (P>0.05) between years for any measurement for either adult males or females, therefore data for each measurement for years 1986-89 were pooled. In 1986-89, the subadult male narwhal were sampled but were not included in the analysis of the adults (Appendix 4). There were only two narwhal sampled in 1983 and these were also not included in the analysis (Appendix 5).

Total body length: Female narwhal sampled during our study attained a maximum length of 494 cm and males 540 cm, which are the largest lengths reported for both males and females (Hay 1984; Mansfield et al. 1975b; Reeves and Tracey (1980); Weaver and Walker (1988b).

There was a significant difference (P<0.05) between the mean body lengths of adult
male and female narwhal (Table 7); mean body lengths were 458 cm for males and 413 cm for females. This is similar to that reported by Hay (1984) and Weaver and Walker (1988). The length frequency distributions between male and female narwhal were also significantly different (P<0.05) (Fig. 6). Significant differences (P<0.05) in mean length depended on the month whales were harvested. Mean lengths differed between areas in July but not in August.

Analysis indicated no significant correlation (P>0.05) between body length and any other measurement for either male or female narwhal.

Generally it appears that narwhal harvested from Admiralty Inlet are larger than those reported harvested from Pond Inlet which may be an indication of a separate substock of narwhal. The length frequency distributions for male narwhal between Arctic Bay and Pond Inlet were significantly different (P<0.05) but not for females (P>0.05) (Table 9). It could also be a result of hunter selection and timing of the hunt.

Other body measurements: Descriptive statistics for body measurements other than body length for adult narwhal are presented in Table 7. All mean measurements (except axillary flipper length) for adult narwhal were significantly different (P<0.005) between male and female narwhal. Correlations between the various measurements are presented in Table 8. All mean measurements (except flipper width) of narwhal harvested by Arctic Bay were not significantly different (P>0.05) for either males or females on that of narwhal harvested in the Pond Inlet area (Table 9).

Reeves and Tracey (1980) state that flipper lengths of narwhal are between 30-40 cm and are 7-10% of the total body length. This was similar to that found for narwhal harvested from Admiralty Inlet; anterior flipper length ranged between 36-56 cm and was approximately 9% of the total body length.

Tusk: Fifty-eight tusks (55 males and 3 females) were measured for exposed length (Table 7); only two had a small tip of the tusk broken off. One double tusked narwhal was sampled in 1987; the left exposed tusk measured 163 cm length and the right measured 157 cm. Basal circumference was 18 cm and 17 cm for the left and right tusks, respectively.

There was no significant difference (P>0.05) between males and females for any mean tusk measurement (Table 7). Analysis indicated a significant correlation (P<0.001) between total tusk length and exposed tusk length (r=0.79) (Table 8). Mean tusk measurements of narwhal harvested by Arctic Bay were not significantly different (P>0.05) for either males or females from that of narwhal harvested in Pond Inlet (Table 9).

Analysis indicated no significant correlation (P>0.05) between the exposed tusk length and body length. However Hay (1984), Silverman (1979), Silverman and Dunbar (1980) and Weaver and Walker (1988) found accelerated tusk growth with increases in body growth. Silverman (1979) found that the total tusk length of male narwhal attained a maximum length of 250 cm. This is slightly less than the maximum tusk length of 283 cm recorded for narwhal from Admiralty Inlet.

Muktuk and blubber

There was a significant difference between both the mean axillary (P<0.001) and umbilical (P<0.001) muktuk measurements of males and females (Table 7). Analysis indicated a significant correlation (P<0.001) between axillary muktuk and the umbilical muktuk measurement for both males (r=0.87) and females (r=0.92) (Table 8).

There was a significant difference between males and females for both the mean axillary (P<0.001) and umbilical (P<0.001) blubber measurements (Table 7). Analysis indicated a significant correlation (P<0.05) between the axillary blubber and the umbilical blubber measurement for both males (r=0.66) and females (r=0.59) (Table 8).

There were no significant differences (P>0.05) in blubber thickness over the summer season for either male or female narwhal sampled from Admiralty Inlet, suggesting that feeding is ongoing during this period or that a high energy food source being used. Weaver and Walker (1988) found no differences in blubber thickness over the summer season for male narwhal and suggested a stable energy balance. However Finley and Gibb (1982) found that blubber thickness of female narwhal declined over the summer season and attributed this to reduced feeding or the additional demands placed on females by calves. Silverman (1979) found that feeding activity decreased in the open water season.

There was a significant difference (P<0.001) in blubber (axillary) measurements between Arctic Bay and Pond Inlet for male narwhal. No comparison could be made for females (Table 9).

FEEDING

Thirteen stomachs were examined in 1987: three (23%) were empty and ten contained food (Table 10). Of those stomachs containing food
items, eight contained squid (likely Gonatus sp.), primarily parts and beaks, seven contained fish remains (likely arctic cod), and only one contained shrimp (sp. unknown). The main food item appears to be fish since six of the ten stomachs examined contained >50% fish remains while only four had >50% squid. Sergeant (1979) reported arctic cod, shrimp and squid found in stomachs of narwhal from Pond Inlet. Hay (1984) found the same food items in the stomachs of narwhal he examined from this area and believed the feeding activity was greatest in the spring.

CONCLUSIONS

1. Historic reported harvests of narwhal have fluctuated, likely in response to ice/weather conditions and hunter requirements i.e. muktuk vs ivory.

2. Sex ratio of the harvest varies between hunt phases and between years. The increase in the number of females landed in 1988 is believed due to the interest of the community co-op in processing muktuk for local resale.

3. Sex composition of the annual harvests for 1986-89 are accurately reported by subsampling the landed catch.

4. Annual harvest statistics underestimate the total number of narwhal killed due to the non-reporting of struck and lost (killed) whales.

5. Estimated total kill of narwhal was 138 in 1983, 139 in 1986, 35 in 1987, 131 in 1988 and 125 in 1989. These estimates exceed the reported landed catch by an average 38%. However they do not include an estimate of calves and fetuses lost.

6. Struck loss rates vary between hunt phase. The floe edge hunt has the highest loss rate (32%) and the open water hunt has the lowest (7%).

7. Hunters can reduce losses in all phases of the hunt by waiting until both a good shot and target are available; in the ice hunts, by having a hook and harpoon ready to retrieve the whale. Loss rates in the open water hunt can be reduced by decreasing the number of deep water hunts where whales are more likely to be lost.

8. Loss rates incurred by Arctic Bay hunters are generally lower than those of Pond Inlet hunters in the floe edge and ice crack hunts. Open water hunt loss rates are similar to those of Pond Inlet.

9. Mean body lengths of narwhal sampled differed between the sexes and years as well as between narwhal landed in Arctic Bay and Pond Inlet which may be an indicator of stock discreteness. There was no correlation between body length and any other measurement.

10. Only 18% of tusks examined were reported as having a broken tip. All were from male narwhal. There was a good correlation between exposed tusk length and total tusk length but no correlation with tusk basal circumference. Fifteen percent of all female narwhal examined had a tusk.

11. There was no change in the thickness of blubber over the season in either male or female narwhal. There were strong correlations between muktuk measurements, but weaker ones between blubber thickness measurements.

12. Examination of stomachs indicated narwhal were feeding mainly on arctic cod and squid.

RECOMMENDATIONS

1. Hunters should try to eliminate the number of narwhal mortally wounded and lost whales especially in the ice crack hunts. They should ensure a good shot is available by firing at targets from a distance <20 m. The use of hard point ammunition with high powered rifles should be encouraged.

2. Kill:landed estimators must be calculated for each hunt phase and over a number of years to correct for variations due to ice and weather conditions and hunter proficiency/efficiency. DFO and the Ikajutit HTA should continue to work cooperatively to obtain the necessary hunt event data to calculate these estimators.

3. DFO, in cooperation with the Ikajutit HTA should re-evaluate the tag system to ensure that females harvested are accurately reported. The Ikajutit HTA should continue to provide harvest data including the sex of the narwhal killed and the hunt phase in which it was harvested.

4. DFO should develop and implement a radio/satellite tagging program to determine narwhal movements and possible stock discreteness between Admiralty Inlet and Pond Inlet/Eclipse Sound.

5. DFO should collect data on the reproductive status of landed females (pregnancy/lactation) which is necessary to adjust for removals of pre-recruits.
ACKNOWLEDGMENTS

The authors wish to extend sincere thanks and appreciation to the Ikajuttit (Arctic Bay) Hunters and Trappers Association for their continued support and assistance throughout the study. Special thanks goes to the guides/monitors without whose help the study could not have been carried out so successfully: Olyuk Naqitarvik, David Kalluk, and Koonoo Oyukuluq.

We are grateful to all the hunters for their cooperation and assistance throughout the study. DFO staff assistance was provided by C. J. Read, K. Procter, B. Howard, J. Orr, S. Heinze-Wilne and R. Moshenko. We also wish to thank G. Williams, Renewable Resource Officer, Arctic Bay for his logistical assistance during the study and interesting and informative discussions.

Polar Continental Shelf Project (PCSP), Department of Energy Mines and Resources provided invaluable logistical support throughout the study period.

J.T. Strong kindly provided the unpublished data for the open water hunt in 1983. P. Weaver and J.T. Strong provided many helpful comments on an earlier draft. S. Cosens and D. Pike reviewed the manuscript. The authors wish to extend their appreciation for the many useful comments and suggestions made by these reviewers.

REFERENCES

Fig. 1. Summering distribution of the three management stocks of narwhal.
Fig. 2. The Admiralty Inlet study area.
Fig. 3. Recorded landings of narwhal by Arctic Bay, 1958–89.
Fig. 4. Recorded and observed landings of male and female narwhal by Arctic Bay, 1986–1989.
Fig. 5. Observed narwhal struck, landed and lost from the Arctic Bay narwhal hunts, 1983 and 1986–89.
<table>
<thead>
<tr>
<th>YEAR</th>
<th>HUNT PHASE</th>
<th>CALIBRE OF FIREARM USED</th>
<th>6.5 % AMMO.</th>
<th>7 mm % AMMO.</th>
<th>223 % AMMO.</th>
<th>303 % AMMO.</th>
<th>308 % AMMO.</th>
<th>30.06 % AMMO.</th>
<th>338 % AMMO.</th>
<th>375 % AMMO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Floe edge</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.7</td>
<td>83.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1987</td>
<td>Floe edge</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>13.5 HP</td>
<td>80.8</td>
<td>HP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.8</td>
<td>HP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1988</td>
<td>Floe edge</td>
<td>27.3 HP</td>
<td>-</td>
<td>-</td>
<td>63.6</td>
<td>HP</td>
<td>9.1</td>
<td>SP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>21.4 HP</td>
<td>46.4</td>
<td>HP</td>
<td>7.1</td>
<td>H/SP</td>
<td>7.1</td>
<td>SP</td>
<td>14.3</td>
<td>H/SP</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>19.0 HP</td>
<td>4.8 SP</td>
<td>4.8 HP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.5</td>
<td>SP</td>
<td>14.3 SP</td>
</tr>
<tr>
<td>1989</td>
<td>Floe edge</td>
<td>4.8 HP</td>
<td>-</td>
<td>-</td>
<td>33.3</td>
<td>4.8 HP</td>
<td>-</td>
<td>28.6</td>
<td>SP</td>
<td>28.6 SP</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>1.6 SP</td>
<td>72.1</td>
<td>HP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11.5</td>
<td>SP</td>
<td>11.5 SP</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| TOTAL | 11.3 | 2.1 | 0.5 | 63.4 | 2.1 | 1.0 | 7.7 | 11.9 |

HP = Hard point
SP = Soft point
H/SP = 50:50 HP and SP
Table 2. Information on the shots fired and firing ranges for observed hunting events documented during the Arctic Bay narwhal hunt, 1983 and 1987-89.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>HUNT PHASE</th>
<th>NO. EVENTS</th>
<th>NO. HUNTERS</th>
<th>NARWHAL STRUCK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>FIRED</td>
<td>STRUCK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STRUCK</td>
<td>SHOTS</td>
<td>NARWHAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>Floe edge</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>1987</td>
<td>Floe edge</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>24</td>
<td>18</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1988</td>
<td>Floe edge</td>
<td>7</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>24</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>19</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>1989</td>
<td>Floe edge</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>49</td>
<td>49</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3. Sex ratio of narwhal harvested in each hunt phase during the annual subsistence hunt in Arctic Bay, 1983-89.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FLOE EDGE</th>
<th>ICE CRACK</th>
<th>OPEN WATER</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>1:0.0</td>
<td>1:<0.1</td>
<td>1:0.7</td>
<td>1:0.1</td>
</tr>
<tr>
<td>1984</td>
<td>1:6.0</td>
<td>1:0.3</td>
<td>0:1.0</td>
<td>1:0.4</td>
</tr>
<tr>
<td>1985</td>
<td>-</td>
<td>1:0.3</td>
<td>-</td>
<td>1:0.3</td>
</tr>
<tr>
<td>1986</td>
<td>1:0.0</td>
<td>1:0.2</td>
<td>1:1.0</td>
<td>1:0.2</td>
</tr>
<tr>
<td>1987</td>
<td>-</td>
<td>1:0.1</td>
<td>1:0.4</td>
<td>1:0.2</td>
</tr>
<tr>
<td>1988</td>
<td>1:1.1</td>
<td>1:0.5</td>
<td>1:0.9</td>
<td>1:0.7</td>
</tr>
<tr>
<td>1989</td>
<td>1:0.4</td>
<td>1:0.2</td>
<td>1:1.2</td>
<td>1:0.3</td>
</tr>
</tbody>
</table>
Table 4. Harvest analysis for each phase of the Arctic Bay narwhal hunt, 1983 and 1987-89.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>HUNT PHASE</th>
<th>STRUCK</th>
<th>LANDED</th>
<th>STRUCK BUT LOST(^1)</th>
<th>MINIMUM TOTAL KILLED</th>
<th>STRUCK(^2) LOSS RATE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW No. %</td>
<td>MM No. %</td>
<td>SUNK No. %</td>
</tr>
<tr>
<td>1983</td>
<td>Floe edge</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>-</td>
<td>-</td>
<td>2 28.5</td>
<td>1 14.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>7</td>
<td>4</td>
<td>2 28.5</td>
<td>1 14.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>7</td>
<td>4</td>
<td>2 28.5</td>
<td>1 14.3</td>
<td>0</td>
</tr>
<tr>
<td>1987</td>
<td>Floe edge</td>
<td>-</td>
<td>-</td>
<td>13 36.1</td>
<td>8 22.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>36</td>
<td>15</td>
<td>13 36.1</td>
<td>8 22.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>36</td>
<td>15</td>
<td>13 36.1</td>
<td>8 22.2</td>
<td>0</td>
</tr>
<tr>
<td>1988</td>
<td>Floe edge</td>
<td>20</td>
<td>6</td>
<td>6 30.0</td>
<td>1 5.0</td>
<td>7 35.0</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>54</td>
<td>29</td>
<td>8 14.8</td>
<td>10 18.5</td>
<td>7 13.0</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>20</td>
<td>13</td>
<td>6 30.0</td>
<td>1 5.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>94</td>
<td>48</td>
<td>20 21.3</td>
<td>12 12.8</td>
<td>14 14.9</td>
</tr>
<tr>
<td>1989</td>
<td>Floe edge</td>
<td>21</td>
<td>16</td>
<td>-</td>
<td>1 4.8</td>
<td>4 19.0</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>70</td>
<td>50</td>
<td>7 10.0</td>
<td>5 7.1</td>
<td>8 11.4</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>91</td>
<td>66</td>
<td>7 7.7</td>
<td>6 6.6</td>
<td>12 13.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Floe edge</td>
<td>41</td>
<td>22</td>
<td>6 14.6</td>
<td>2 4.9</td>
<td>11 26.8</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>160</td>
<td>94</td>
<td>28 17.5</td>
<td>23 14.4</td>
<td>15 9.4</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>27</td>
<td>17</td>
<td>8 29.6</td>
<td>2 7.4</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\) SW = superficially wounded, MM = mortally wounded, SUNK = killed but sunk.

\(^2\) MM + SUNK.
Table 5. Estimated total kill, by hunt phase and year, for the Arctic Bay narwhal hunt, 1983 and 1986-89.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>HUNT PHASE</th>
<th>KILL:LANDED ESTIMATOR</th>
<th>REDUCED-BIAS KILL:LANDED ESTIMATOR</th>
<th>TOTAL RECORDED LANDED</th>
<th>ESTIMATED TOTAL KILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Floe edge</td>
<td>-</td>
<td>1.56*</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>-</td>
<td>1.41*</td>
<td>80</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>1.25</td>
<td>1.18</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td></td>
<td>100</td>
<td>138</td>
</tr>
<tr>
<td>1986</td>
<td>Floe edge</td>
<td>-</td>
<td>1.56*</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>-</td>
<td>1.41*</td>
<td>91</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>1.11*</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td></td>
<td>100</td>
<td>139</td>
</tr>
<tr>
<td>1987</td>
<td>Floe edge</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>1.53</td>
<td>1.50</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>1.11*</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td></td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>1988</td>
<td>Floe edge</td>
<td>2.33</td>
<td>2.08</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>1.59</td>
<td>1.56</td>
<td>50</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>1.08</td>
<td>1.07</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td></td>
<td>86</td>
<td>131</td>
</tr>
<tr>
<td>1989</td>
<td>Floe edge</td>
<td>1.31</td>
<td>1.29</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Ice crack</td>
<td>1.26</td>
<td>1.26</td>
<td>70</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Open water</td>
<td>-</td>
<td>1.11*</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td></td>
<td>100</td>
<td>125</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>HUNT PHASE</th>
<th>KILL:LANDED ESTIMATOR</th>
<th>REDUCED-BIAS KILL:LANDED ESTIMATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floe edge</td>
<td>1.59</td>
<td>1.56</td>
</tr>
<tr>
<td>Ice crack</td>
<td>1.46</td>
<td>1.41</td>
</tr>
<tr>
<td>Open water</td>
<td>1.12</td>
<td>1.11</td>
</tr>
</tbody>
</table>

* Total (pooled) estimator.
Table 6. Observed landed catch composition in each phase of the Arctic Bay narwhal hunt, 1986-89.

YEAR	HUNT PHASE	MALES		MALES	FEMALES		FEMALES	% FEMALE LANDED		
------	-------------	-------								
		ADULT	IMMATURE	TOTAL	ADULT	IMMATURE	TOTAL			
1986	Floe edge	-	-	-	-	-	-			
	Ice crack	11	-	11	3	-	3	21.4		
	Open water	-	-	-	-	-	-			
1987	Floe edge	-	-	-	-	-	-			
	Ice crack	9	1	10	2	-	2	16.7		
	Open water	-	-	-	-	-	-			
1988	Floe edge	-	-	-	-	-	-			
	Ice crack	11	-	11	5	-	5	31.3		
	Open water	1	2	3	5	-	5	62.5		
1989	Floe edge	7	-	7	1	-	1	12.5		
	Ice crack	17	1	18	4	-	4	18.2		
	Open water	-	-	-	-	-	-			
Table 7. Morphometric measurements (cm), by sex, for adult narwhal sampled from the Arctic Bay narwhal hunt, 1986-89.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>MALES</th>
<th>FEMALES</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Range</td>
</tr>
<tr>
<td>Body length</td>
<td>56</td>
<td>458</td>
<td>396-540</td>
</tr>
<tr>
<td>Fluke width</td>
<td>54</td>
<td>106</td>
<td>61-130</td>
</tr>
<tr>
<td>Axillary girth</td>
<td>54</td>
<td>255</td>
<td>200-286</td>
</tr>
<tr>
<td>Umbilical girth</td>
<td>52</td>
<td>282</td>
<td>221-366</td>
</tr>
<tr>
<td>Flipper length (anterior)</td>
<td>52</td>
<td>41</td>
<td>36-47</td>
</tr>
<tr>
<td>Flipper length (axilla)</td>
<td>52</td>
<td>36</td>
<td>29-41</td>
</tr>
<tr>
<td>Flipper width</td>
<td>52</td>
<td>22</td>
<td>15-30</td>
</tr>
<tr>
<td>Exposed tusk length</td>
<td>55</td>
<td>173</td>
<td>76-245</td>
</tr>
<tr>
<td>Total tusk length</td>
<td>44</td>
<td>213</td>
<td>107-283</td>
</tr>
<tr>
<td>Tusk basal circumference</td>
<td>49</td>
<td>20</td>
<td>15-25</td>
</tr>
<tr>
<td>Muktuk (axillary)</td>
<td>52</td>
<td>1.2</td>
<td>0.4-1.6</td>
</tr>
<tr>
<td>Muktuk (umbilical)</td>
<td>53</td>
<td>1.2</td>
<td>0.5-1.6</td>
</tr>
<tr>
<td>Blubber (axillary)</td>
<td>51</td>
<td>6.7</td>
<td>3.1-10.3</td>
</tr>
<tr>
<td>Blubber (umbilical)</td>
<td>52</td>
<td>6.4</td>
<td>2.3-8.3</td>
</tr>
</tbody>
</table>
Table 8. Relationship between morphometric measurements, by sex, of narwhal sampled from the Arctic Bay narwhal hunt, 1986-89.

<p>	Independent Variable	Dependent Variable	Males				Females			
		N	r	Correlation Coefficient	Estimate of	Intercept	Slope	N	r	Correlation Coefficient
Axillary girth	Umbilical girth	51	0.51	117.777	0.644	<0.001		17	0.76	88.212
Flipper length	Flipper length	51	0.73	5.898	0.742	<0.001		19	0.65	16.969
(anterior)	(axilla)									
Exposed tusk	Total tusk length	43	0.79	57.226	0.894	<0.001		-	-	-
Muktuk (axillary)	Muktuk (umbilical)	51	0.87	0.267	0.940	<0.001		19	0.92	0.030
Blubber (axillary)	Blubber (umbilical)	50	0.66	2.955	0.512	<0.001		17	0.59	0.539
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Arctic Bay</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean, Std. Error</td>
<td>N</td>
<td>Mean, Std. Error</td>
<td>P</td>
<td>N</td>
<td>Mean, Std. Error</td>
<td>N</td>
<td>Mean, Std. Error</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------------</td>
<td>------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body length</td>
<td>56</td>
<td>458, 2.849</td>
<td>37</td>
<td>435, 3.724</td>
<td><0.001</td>
<td>20</td>
<td>413, 7.407</td>
<td>20</td>
<td>381, 6.872</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluke width</td>
<td>54</td>
<td>106, 1.203</td>
<td>36</td>
<td>107, 1.366</td>
<td>>0.050</td>
<td>20</td>
<td>92, 1.984</td>
<td>17</td>
<td>91, 2.609</td>
<td>>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axillary girth</td>
<td>54</td>
<td>255, 2.274</td>
<td>27</td>
<td>260, 3.380</td>
<td>>0.050</td>
<td>19</td>
<td>229, 4.809</td>
<td>13</td>
<td>222, 6.919</td>
<td>>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbilical girth</td>
<td>52</td>
<td>282, 2.951</td>
<td>34</td>
<td>282, 3.436</td>
<td>>0.050</td>
<td>19</td>
<td>245, 4.304</td>
<td>13</td>
<td>240, 8.322</td>
<td>>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flipper length (anterior)</td>
<td>52</td>
<td>41, 0.350</td>
<td>34</td>
<td>42, 1.346</td>
<td>>0.050</td>
<td>20</td>
<td>40, 0.966</td>
<td>17</td>
<td>38, 0.840</td>
<td>>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flipper length (axilla)</td>
<td>52</td>
<td>36, 0.355</td>
<td>32</td>
<td>36, 0.853</td>
<td>>0.050</td>
<td>20</td>
<td>34, 0.635</td>
<td>13</td>
<td>35, 0.796</td>
<td>>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flipper width</td>
<td>52</td>
<td>22, 0.354</td>
<td>32</td>
<td>21, 0.244</td>
<td><0.050</td>
<td>20</td>
<td>26, 0.738</td>
<td>14</td>
<td>18, 0.512</td>
<td><0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed tusk length</td>
<td>55</td>
<td>173, 3.940</td>
<td>36</td>
<td>162, 4.962</td>
<td>>0.050</td>
<td>3</td>
<td>149, 41.005</td>
<td>2</td>
<td>100, -</td>
<td>>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tusk length</td>
<td>44</td>
<td>213, 4.959</td>
<td>10</td>
<td>220, 7.793</td>
<td>>0.050</td>
<td>3</td>
<td>175, 42.191</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tusk basal circumference</td>
<td>49</td>
<td>20, 0.348</td>
<td>36</td>
<td>21, 0.503</td>
<td>>0.050</td>
<td>2</td>
<td>22, 6.500</td>
<td>1</td>
<td>13, -</td>
<td>>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blubber (axillary)</td>
<td>51</td>
<td>6.66, 0.187</td>
<td>9</td>
<td>7.95, 0.367</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Occurrence of various food items in narwhal stomachs, Arctic Bay, 1987.

<table>
<thead>
<tr>
<th>No. Stomachs Containing Food</th>
<th>No. Stomachs Containing</th>
<th>No. Stomachs Containing > 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Squid</td>
<td>Fish</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>
Appendix 1. Data sheet used for the collection of narwhal hunt event data.

HUNTING CENSUS FORM

DATE:

Hunt:

Weather:

Weather:

Weather:

Weather:

Weather:

Water:

Water:

Water:

Water:

Location:

Species:

Name of hunter(s):

Animals shot at:

Animals struck:

Animals lost:

Animals sunk:

Animals landed:

Total shots fired:

Calibre of rifle(s):

Type of ammunition:

Distance animal shot from:

Hunt time: Start Finish

Indicate where animal was struck.

Data recorded by:

Hunter Monitor
Appendix 2. Data sheet used for the collection of narwhal biological data.

CETACEAN DATA SHEET

<table>
<thead>
<tr>
<th>Sample #:</th>
<th>Date</th>
<th>Species:</th>
<th>Lat:</th>
<th>Long:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location:</th>
<th>Sex:</th>
<th>Male</th>
<th>Female</th>
<th>Blubber Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at armpit: (11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at navel: (14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(16)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total length</th>
<th>(1)</th>
<th>cm</th>
<th>Multuk (cm)</th>
<th>Blubber (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluke width:</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girth at armpit:</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girth at navel:</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flipper length: (right side)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- anterior origin to tip</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- axilla to tip</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- maximum width</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tusk:</td>
<td>exposed length</td>
<td>(9)</td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>- basal circum.</td>
<td>(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- total length</td>
<td>C-FC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data recorded by: Hunter | Recorder Name |
| Monitor | |

"WyJC \text{J} \text{C}\text{J}\text{A}\text{J}\text{A}\text{J}\text{A}\text{A} | \text{J} \text{C}\text{J}\text{A}\text{J}\text{A}\text{J}\text{A}\text{A}"
Appendix 3. Morphometric measurements (cm) for subadult male narwhal sampled from the Arctic Bay narwhal hunt, 1986-89.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Range</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body length</td>
<td>4</td>
<td>333</td>
<td>290-368</td>
<td>32.2</td>
</tr>
<tr>
<td>Fluke width</td>
<td>5</td>
<td>83</td>
<td>75-92</td>
<td>7.3</td>
</tr>
<tr>
<td>Girth - axillary</td>
<td>4</td>
<td>200</td>
<td>183-212</td>
<td>12.7</td>
</tr>
<tr>
<td>- umbilical</td>
<td>4</td>
<td>202</td>
<td>185-225</td>
<td>17.8</td>
</tr>
<tr>
<td>Flipper length - anterior</td>
<td>5</td>
<td>36</td>
<td>35-38</td>
<td>1.1</td>
</tr>
<tr>
<td>- axilla</td>
<td>5</td>
<td>31</td>
<td>29-33</td>
<td>1.6</td>
</tr>
<tr>
<td>Flipper width</td>
<td>5</td>
<td>18</td>
<td>17-20</td>
<td>1.3</td>
</tr>
<tr>
<td>Tusk length - exposed</td>
<td>4</td>
<td>72</td>
<td>19-150</td>
<td>63.4</td>
</tr>
<tr>
<td>- total</td>
<td>4</td>
<td>101</td>
<td>44-184</td>
<td>68.5</td>
</tr>
<tr>
<td>Tusk basal circumference</td>
<td>4</td>
<td>1.1</td>
<td>0.7-1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Muktuk - axillary</td>
<td>2</td>
<td>1.11</td>
<td>0.97-1.27</td>
<td>0.2</td>
</tr>
<tr>
<td>- umbilical</td>
<td>2</td>
<td>1.27</td>
<td>1.13-1.40</td>
<td>0.2</td>
</tr>
<tr>
<td>Blubber - axillary</td>
<td>2</td>
<td>6.68</td>
<td>5.73-7.63</td>
<td>1.3</td>
</tr>
<tr>
<td>- umbilical</td>
<td>2</td>
<td>6.15</td>
<td>5.33-6.97</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Appendix 4. Morphometric measurements (cm) for narwhal from the Arctic Bay narwhal hunt, 1983.

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Body length</td>
<td>1</td>
<td>319.00</td>
</tr>
<tr>
<td>Fluke width</td>
<td>1</td>
<td>80.00</td>
</tr>
<tr>
<td>Girth - axillary</td>
<td>1</td>
<td>95.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>105.00</td>
</tr>
<tr>
<td>Flipper length - anterior</td>
<td>1</td>
<td>37.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>29.00</td>
</tr>
<tr>
<td>Flipper width</td>
<td>1</td>
<td>16.00</td>
</tr>
<tr>
<td>Tusk length - exposed</td>
<td>1</td>
<td>43.00</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tusk basal circumference</td>
<td>1</td>
<td>1.10</td>
</tr>
<tr>
<td>Muktuk - axillary</td>
<td>1</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.37</td>
</tr>
<tr>
<td>Blubber - axillary</td>
<td>1</td>
<td>6.37</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.87</td>
</tr>
</tbody>
</table>